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Abstract— In this paper, we present a novel online approach
for tracking whole-body human motion based on unlabeled
measurements of markers attached to the body. For that
purpose, we employ a given kinematic model of the human
body including the locations of the attached markers. Based
on the model, we apply a combination of constrained sample-
based Kalman filtering and multi-target tracking techniques:
1) joint constraints imposed by the human body are satisfied
by introducing a parameter transformation based on periodic
functions, 2) a global nearest neighbor (GNN) algorithm com-
putes the most likely one-to-one association between markers
and measurements, and 3) multiple hypotheses tracking (MHT)
allows for a robust initialization that only requires an upright
standing user. Evaluations clearly demonstrate that the pro-
posed tracking provides highly accurate pose estimates in real-
time, even for fast and complex motions. In addition, it provides
robustness to partial occlusion of markers and also handles
unavoidable clutter measurements.

I. INTRODUCTION

Knowledge about whole-body human motion is a key ingre-
dient for a large number of research areas, including the field
of computer graphics and animation, robotic applications, e.g.,
imitation learning, biomechanical analysis, e.g., gait analysis
for rehabilitation, and human intention recognition. The most
intuitive and comprehensive way to acquire such human
motion is to track the whole-body movements performed by
a subject. In addition, for certain applications, it is desirable
to acquire the motion in real time, e.g., to directly inspect
the reconstructed motion or reproduce it on a humanoid
robot. An established and widely used way of capturing
human motion is to use commercial marker-based motion
capture systems, such as Vicon systems, which can provide
discrete-time position measurements of non-unique/unlabeled
markers attached to the human body (see Fig. 1a). In order
to gain knowledge about the motion from these noisy marker
trajectories, they can be used to determine the time-varying
parameters of a kinematic model, i.e., joint angle values, and
root position and orientation, that describe the human pose.

Due to the nonlinear relationship between the marker
measurements and the model parameters to be determined,
the considered tracking is equivalent to estimating the state of
a discrete-time stochastic nonlinear dynamic system, where
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(a) Optical motion capture. (b) Estimated human pose.

Fig. 1: The proposed whole-body motion tracking. Unlabeled
markers attached to the human body are measured using
optical motion capture and used to estimate the human pose.

the system state is the human pose (see Fig. 1b). Popular
recursive state estimators are (nonlinear) Kalman filters [1],
[2] or particle filters [3]. The advantage of such estimators
is that they maintain a probability distribution of the state
estimate and use this distribution to optimally fuse the current
state estimate with newly available noisy measurements to
obtain an updated distribution.

A. Contribution

In [4], we proposed a real-time whole-body motion tracking
using labeled marker measurements based on recursive
nonlinear state estimation. In this paper, we extend our
approach to the much more complicated case of unlabeled
marker measurements. For that purpose, we assume a known
kinematic model of the human body, where joint angles and
root pose are the only time-varying parameters. This also
includes joint limits derived from biomechanical analysis and
the locations of the markers attached to the body.

Unfortunately, due to the many degrees of freedom (DoF)
required for a detailed kinematic model, particle filters are
not suitable for real-time tracking as they would need a huge
amount of particles to get meaningful state estimates. Hence,
we use the smart sampling Kalman filter (S2KF) [5] to allow
for estimating all parameters of the kinematic model in real
time. Moreover, the imposed joint limits turn the tracking task
into a constrained estimation problem. In order to satisfy these
limits, we transform the constrained estimation problem into
an unconstrained problem with the aid of periodic functions.
This is necessary, as Kalman filters, including the S2KF, can
only estimate unconstrained quantities.

The main challenge, however, arises from the unlabeled
marker measurements, as they form an instance of multi-
target tracking with unknown associations. More precisely, the



markers attached to the body are targets and for the measured
locations, it is not known from which marker they originate.
Our solution to this is twofold. On the one hand, a global
nearest neighbor (GNN) approach [6, Sec 6.4], [7, Sec. 10.3.1]
is used to compute optimal associations between observed
marker locations and predicted marker locations. On the other
hand, a customized version of multiple hypotheses tracking
(MHT) [6] is used to maintain multiple pose hypotheses over
time. This is required to cope with convergence to wrong
poses, which is unavoidable due to the unknown associations
and especially challenging when markers are observed for
the first time.

B. Related Work

The authors of [8] proposed a method to track movements
of human hands with unlabeled markers that also uses a
GNN approach in the form of the Hungarian algorithm. In
addition, they deal with marker occlusions by performing
interpolation procedures. As opposed to this, we perform mo-
tion tracking for the entire body. Moreover, we consequently
model uncertainties, and thanks to the use of recursive state
estimation techniques, our tracking can naturally deal with
marker occlusions without any special interpolation procedure.

In [9], whole-body motion tracking based on unlabeled
markers is considered as well. Here, also the Hungarian
algorithm is used for an one-to-one assignment of markers and
measurements, and a known kinematic model of the human
body is assumed that, however, does not include the locations
of the attached markers. Instead, the locations of the markers
and the corresponding body segments are estimated during the
initialization phase of the tracking. Compared to our approach
this has some drawbacks. First, usually anatomically inspired
marker placements are used and markers are not placed at
arbitrary locations. Such information is not utilized in this
approach, and hence, lost. Second, each subject is required
to perform a special initialization pose, i.e., a T-pose, for the
actual tracking.

Furthermore, the work in [9] is extended in [10] with a
faster initialization procedure using the k-means algorithm.
However, the implementation is tailored to a sheep, e.g.,
assuming a number of four or five marker clusters and
providing a heuristics for detecting the head markers, and
has not been evaluated with a human subject. Furthermore,
the authors provide an MHT approach for an automatic
initialization based on a large set of already captured motions.
Unfortunately, this initialization can take several minutes,
making their approach intractable for real-time tracking. In
contrast to this, our tracking does not need such a special
initialization phase, and can operate in real time a few
seconds after the tracking started. We only assume that the
human initially stands upright. For example, in our approach
the human can simply walk into the area observed by the
marker-based motion capture system to start the tracking
automatically. This makes our proposed whole-body motion
tracking very user-friendly.

The problem of missing marker positions is addressed
in [11]. Their approach is to predict missing marker posi-
tions using previously known marker positions and to get
information based on rigid body assumptions. Instead, our
proposed recursive state estimation approach implicitly takes
information of previous frames into account to be able to
handle missing markers more easily. Moreover, in [11] no
fixed kinematic model is used, since they do online joint
localization in the marker point cloud, which results in a
time-varying kinematic model.

II. THE MASTER MOTOR MAP FRAMEWORK

The Master Motor Map (MMM) framework [12], [13] pro-
vides an open-source framework for capturing, representing,
and analyzing human motion and reproducing it on humanoid
robots. At its core, it provides the MMM reference model,
a whole-body model for the human body based on well-
established biomechanics literature that can be scaled to the
measured body height of a human subject. This reference
model can represent human motion using 6 DoF for the root
pose, 52 DoF for torso, extremities, head, and eyes, and
2 × 23 DoF for the fingers of both hands. It is explained in
more detail in [12] and exemplified in Fig. 1b. A reference
marker set that can be used for whole-body motion capture
(specifications are given in [14]) is also part of the MMM
reference model.

The MMM framework already provides procedures for
the reconstruction of human motion, which formulate the
problem as a frame-wise optimization problem [12], [15].
However, these algorithms can only work with labeled
marker measurements and cannot handle missing marker
measurements. Hence, time-consuming and error-prone post-
processing of the recorded marker trajectories is necessary to
make these approaches work. In the next section, we introduce
our new approach that does not have these limitations, i.e., it
can be directly applied to the unlabeled marker measurements
provided by a marker-based motion capture system.

III. WHOLE-BODY HUMAN MOTION TRACKING
WITH UNLABELED MARKERS

In this section, we describe a novel approach for tracking
whole-body motions with unlabeled markers. We start with
some preconditions. At each discrete time step k, the
kinematic model is characterized by J joint angles1

θk = [θ
(1)
k , . . . , θ

(J)
k ]> (1)

as well as by the root pose with its position rk = [rxk , r
y
k, r

z
k]>

in Cartesian coordinates and its orientation ok = [ork, o
p
k, o

y
k]>

in roll, pitch, and yaw angles. In addition, like human joints,
all joint angles are limited to an individual range

lj ≤ θ(j)
k ≤ uj , ∀j ∈ {1, . . . , J} , (2)

where lj denotes the lower bound and uj the upper bound.
Based on a known kinematic model of the human body
including the locations of N markers attached to it, e.g.,

1Vectors are underlined and matrices are printed bold face.



the MMM reference model, for a given root pose and joint
angles, we can compute the position p(n)

k of the n-th marker
in Cartesian world coordinates using the forward kinematics

p(n)
k

= h(n)(rk, ok, θk) , ∀n ∈ {1, . . . , N} . (3)

Furthermore, a marker-based motion capture system provides
us with a set Mk = {m̃(1)

k , . . . , m̃
(Mk)
k } of Mk noisy and

unlabeled marker measurements in Cartesian coordinates.
Note that, due to possible occlusions and/or clutter, Mk can
be smaller or larger than N .

A. Satisfying the Joint Angle Bound Constraints

Our goal is to infer, i.e., estimate, the kinematic model
parameters θk, rk, and ok from the received marker positions
Mk using a sample-based Kalman filter. This estimation task,
however, poses an additional challenge, as Kalman filters by
design can only estimate unconstrained quantities. That is,
estimating θk directly with a Kalman filter may violate the
constraints (2). Recall that the system state estimates of a
Kalman filter are represented by Gaussian distributions, i.e.,
by a mean vector and a covariance matrix. In order to take the
bound constraints properly into account, it is necessary that
(i) the mean vector must always lie inside a bounded region
of the state space, and (ii) the covariance matrix has to reflect
that the state space is bounded by being smaller compared to
an unconstrained state space. In literature, there exist various
approaches to incorporate constraints into Kalman filters.
• Perfect measurements [1] are designed for equality

constraints and are not suitable for inequality constraints.
Hence, they cannot be applied to the considered bound
constraint problem.

• Projection techniques [1] correct the posterior state mean
after a Kalman filter prediction/update step. Unfortu-
nately, they cannot correct the posterior state covariance
matrix as well.

• PDF truncation [1] is an elegant way to respect linear
inequality constraints and corrects both posterior state
mean and covariance matrix. However, it is compu-
tationally expensive for high-dimensional states as it
requires several Gram–Schmidt orthogonalizations and
eigendecompositions of the state covariance matrix,
which are not guaranteed to converge, and hence, make
this approach unreliable.

• The sampling-based approach proposed in [16] can be
seen as a numerical approximation of the PDF truncation
approach. The problem here is that due to the large state
space situations frequently occur in which too many
samples lie outside of the constrained region and no
constrained estimate can be computed. This is analogous
to the well-known sample degeneracy problem of particle
filters.

As we seek a real-time capable and accurate human motion
tracking method, we choose another way to satisfy (2) for all
joint angles. We perform a parameter transformation using
a periodic function g : R → [−1, 1]. We introduce a new
joint parameter Θ

(j)
k for each joint angle θ(j)

k according to

the mapping

θ
(j)
k = gj(Θ

(j)
k ) =

uj − lj
2

sin(Θ
(j)
k ) +

lj + uj
2

.

As a result, Θ
(j)
k can take any value in R while (2) is always

satisfied. It should be noted that this periodic approach,
however, is sensitive to large uncertainties in the parameters
Θ

(j)
k , that is, their uncertainties should not be larger than the

period of the periodic function to get meaningful estimation
results. Alternatively, sigmoid functions like the hyperbolic
tangent could also be used for such a transformation. However,
experiments showed that then the filter exhibits problems to
properly update a joint angle estimate in situations where it
is close to a bound constraint, as the gradient of a sigmoid
function becomes very small for large parameters.

Analogously to the vector θk (1), we define the joint
parameter vector Θk = [Θ

(1)
k , . . . ,Θ

(J)
k ]>. We also introduce

the vector-valued function

θk = g(Θk) =
[
g1(Θ

(1)
k ), . . . , gJ(Θ

(J)
k )
]>

that transforms all joint parameters back to their correspond-
ing joint angles.

At this point, we can define the system state vector

xk = [r>k , o
>
k ,Θ

>
k ]> ∈ RD

with D = 6 + J that fully describes the constrained whole-
body pose at time step k. This state vector can now be
recursively estimated with a sample-based Kalman filter
consisting of the usual alternating state prediction and
measurement update.

B. State Prediction

For the state prediction, we have to model possible changes
in the human’s pose from one time step to the next one.
Fortunately, marker-based motion capture systems work with
high frame rates (100 Hz in our case), and hence, the pose
will only change slightly between time steps. Hence, it is
sufficient to employ the simple identity system model

xk = xk−1 + wk , (4)

where wk is zero-mean white Gaussian noise with covariance
matrix Qk. Given the state mean x̂ek−1 and state covariance
Ce
k−1 from the last time step k− 1, the predicted state mean

x̂pk and the predicted state covariance Cp
k can be simply

computed in closed-form.

C. From State to Marker Positions

In order to update the predicted state estimate, we first need
mappings from xk to each individual marker position. Those
mappings consist of two parts. On the one hand, given a
specific system state, for each marker the forward kinematics
of the respective kinematic chain has to be computed using (3).
As a result, it is known where to expect all markers for the
human pose described by the respective system state. On
the other hand, the measured marker positions are subject
to noise. Hence, uncertainty has to be taken into account in



order to obtain good estimation results, especially in case of
high noise. Both together leads to the desired mappings

m
(n)
k = h(n)(xk) + v

(n)
k

= h(n)(rk, ok, g(Θk)) + v
(n)
k

,∀n ∈ {1, . . . , N}, (5)

where v(n)
k is additive zero-mean white Gaussian noise with

covariance matrix R
(n)
k . The choice of R(n)

k depends on the
utilized tracking system. Moreover, it is assumed that the noise
vectors v(i)

k and v
(j)
k with i 6= j are mutually independent,

and that each noise vector v(n)
k is also independent of the

system state xk. The mappings (5) are used in Section III-E
to construct the measurement equation that is required for
the measurement update.

D. Marker–Measurement Association and Outlier Detection

Now, we have to tackle the central problem of unknown
marker–measurement associations and the detection of poten-
tial measurement outliers. That is, given the predicted state
estimate, i.e., x̂pk and Cp

k, for each received measurement,
we have to decide whether it is an outlier in order to discard
it and, if not, determine from which marker it originates.
This task boils down to a multi-target tracking problem,
where all targets move in a collaborative manner due to the
underlying kinematic model. Removing measurement outliers
and obtaining optimal marker–measurement associations
consists of several steps.

First, for each marker 1 ≤ n ≤ N we compute the
predicted position mean

m̂
(n)
k =

1

S

S∑
s=1

h(n)(x
(s)
k )

and predicted position covariance matrix

(Cm
k )(n) =

1

S

S∑
s=1

(h(n)(x
(s)
k )− m̂(n)

k ) ·

(h(n)(x
(s)
k )− m̂(n)

k )> + R
(n)
k ,

where the equally weighted samples x(s)
k approximate the

prior Gaussian state estimate N (xk; x̂pk,C
p
k) with the aid of

the Gaussian sampling technique from the smart sampling
Kalman filter (S2KF) [5].

Second, based on the predicted marker means, measurement
outliers are removed using ellipsoidal gates [6, Sec. 6.3.2],
i.e., a measurement m̃(i)

k is discarded if ‖m̃(i)
k − m̂

(n)
k ‖2 >

εo,∀ 1 ≤ n ≤ N . The remaining M ′k measurements are given
by the set M′k. As the markers attached to the body can
slightly move during locomotion, the common gating based
on the Mahalanobis distance leads to problems, and thus, we
choose to use the Euclidean distance instead.

Third, with the remaining measurementsM′k, we determine
the most probable one-to-one assignment between predicted
marker positions and measurements using a GNN approach.
This has the advantage that one marker will only be associated
to exactly one measurement, and thus, reflects the fact that
each marker can only generate one measurement per time step.

In order to incorporate the uncertainty of the state estimate
and the measurement noise into the association procedure,
we compute the Mahalanobis distances between all predicted
marker positions and measurements according to

d(n,i) = (m̂
(n)
k − m̃(i)

k )>
(

(Cm
k )(n)

)−1

(m̂
(n)
k − m̃(i)

k ) ,

with 1 ≤ n ≤ N and 1 ≤ i ≤ M ′k. These d(n,i) build the
cost matrix Dk ∈ RN,M

′
k to be minimized by the association

algorithm. It is useful to understand that the association
that maximizes the product of the probability densities also
minimizes the sum of Mahalanobis distances [17, Sec 11.3].
Finding the association that minimizes the sum of the costs
is a classical linear assignment problem (LAP), which can be
solved, e.g., by the Hungarian algorithm [18]. Modern variants
of the Hungarian algorithm feature a runtime complexity of
O(n3), and Jonker and Volgenant [19] proposed a very fast
solver called LAPJV, which we utilize in our implementation.

Due to potential occlusions of markers and erroneous
measurements not stemming from markers (clutter), the cost
matrix Dk is not necessarily square, which is the expected
input format for many LAP solvers such as LAPJV. Hence, if
M ′k 6= N we have to extend the cost matrix Dk to a square
one. If M ′k < N , we introduce N−M ′k “fake measurements”,
or if M ′k > N , we introduce M ′k −N “fake markers”. These
get a cost that is larger than any distance between the actual
measurements and predicted marker positions. This prevents
the “fake measurements/markers” to compete with the non-
fake entries, and thus, ensures that declaring a measurement
as clutter or a marker as occluded is only done as the last
resort.

Note that filling up the cost matrix only until it is square
poses the risk of false assignments in case of simultaneous
clutter and occlusions. While there are more sophisticated
ways to account for this problem [6, Sec. 6], they are
hard to parametrize for our scenario. Moreover, due to the
preceding gating step, errors induced by simultaneous clutter
and occlusions are reduced to a minimum.

Based on the constructed cost matrix, the LAPJV algorithm
computes the optimal marker–measurement associations.
From these associations, we only use the A = min(M ′k, N)
associations with smallest costs, as we have only N markers
that can be associated to a measurement, i.e., the “fake
measurements/markers” are ignored. The indices of the
selected measurements are {s1, . . . , sA}, with 1 ≤ si ≤M ′k
and si 6= sj , whereas the indices of the associated markers
are {a1, . . . , aA}, with 1 ≤ ai ≤ N and ai 6= aj .

Please note that there are multi-target tracking approaches
in literature [6], [7] that are more sophisticated or significantly
faster. Greedy approaches such as the (local) nearest neighbor
(LNN) [7, Sec. 10.3] can return an association in O(n2) but
its performance quickly deteriorates in regions where markers
are densely clustered. Better alternatives for suboptimal
approaches are Auction algorithms [20], which provide
an upper bound for their suboptimality in the worst case.
However, since the majority of computation is used for the



nonlinear filtering, we deem LAPJV to be fast enough and
do not need to sacrifice assignment quality for higher speed.

E. Measurement Update

Next, we need a single measurement vector m̃k constructed
out of the associated measurements and a measurement
equation that models the relationship between the system
state xk and this constructed measurement vector. The
measurement vector is constructed by stacking the selected
A marker measurements according to

m̃k = [(m̃
(s1)
k )>, . . . , (m̃

(sA)
k )>]> , (6)

with m̃(si)
k ∈M′k, and the measurement equation is given by

m
(a1)
k
...

m
(aA)
k


︸ ︷︷ ︸

=:mk

=


h(a1)(xk)

...
h(aA)(xk)


︸ ︷︷ ︸

=:hk(xk)

+


v

(a1)
k
...

v
(aA)
k


︸ ︷︷ ︸

=:vk

,
(7)

where the zero-mean Gaussian measurement noise vector
vk has the covariance matrix Rk = diag(R

(a1)
k , . . . ,R

(aA)
k ).

Therefore, the measurement m̃(si)
k is a realization of the

random vector m(ai)
k . Note also that, if we receive less

measurements than markers, not all markers are used during
a measurement update to correct the state estimate, and thus,
the human pose.

Finally, with the measurement (6) and the measurement
model (7), we can directly apply the smart sampling Kalman
filter (S2KF) to update the predicted state estimate to obtain
the posterior state mean x̂ek and posterior state covariance Ce

k.

F. Filter Initialization

Last but not least, to start with the recursive state estimation,
an initial state estimate with initial state mean x̂e0 and
initial state covariance Ce

0 matrix is required. The estimator
initialization strongly depends on the kinematic model, e.g.,
number of joints, and the utilized motion capture system.
The initialization of our implementation will be discussed in
Section IV.

G. Multiple Hypotheses Tracking (MHT)

In principle, a single Kalman filter would be sufficient to
perform the whole-body motion tracking. Nonetheless, a main
challenge in multi-target tracking with unknown associations
is that the filter may converge to wrong local minima from
which it cannot simply recover, i.e., in our case the filter
would not converge to the true pose. Without forcing a
special initialization pose with a specific root orientation
and configuration of each extremity, e.g., the well-known T-
pose, it is impossible to provide a single initial state estimate
which lets the filter always converge to the correct pose.

To make our whole-body motion tracking more user-
friendly and circumvent such a special initialization pose,
we pursue a multiple hypotheses tracking (MHT) approach
instead. The key idea of MHT is to maintain a tree of
hypotheses to resolve the ambiguities in the state estimation

arising from the unknown associations over time [6, Sec. 6.7].
However, unlike true MHT approaches and similar to [21],
we do not form new hypotheses at each time step. Instead,
we only generate multiple hypotheses at the very beginning
when our initial pose is still entirely unknown and there is
a significant risk of getting stuck in an incorrect pose. Note
that this proposed setup is similar to [22] and is also a special
case of an interacting multiple model (IMM) [23], as each
filter has its own individual measurement model. However,
the transition probability between different models is zero.

In essence, at time step k we have Lk filters with respective
weights w(l)

k , 1 ≤ l ≤ LK . How many filters are used in
the beginning and how their respective initial state means
and initial state covariances are determined will be discussed
in Section IV. The filter weights form a discrete probability
distribution over all filters and the overall pose estimate of
the whole-body motion tracking is set to the estimate of the
filter with the largest weight, i.e., the mode of the discrete
probability distribution.

In each time step k, each filter performs a prediction based
on the system model (4). It then computes the measurement
(6) based on Mk and performs an update with the measure-
ment equation (7). Subsequently, the current filter weights
w

(l)
k have to be updated for the next time step. Unfortunately,

state-of-the-art weighting schemes such as evaluating the
measurement in the measurement distribution [22] do not
work due to the large measurement vector mk, as this leads
to numerical issues. Hence, we again compute the optimal
marker–measurement associations, but now with the already
updated state estimate. As a by-product, we obtain the
minimized sum c

(l)
k of their Mahalanobis distances. Based on

the c(l)k , the filter weights for the next time step are computed
according to w

(l)
k+1 = w

(l)
k (c

(l)
k )−1, ∀l ∈ {1, . . . , Lk}. The

idea behind this is that filters that converge to a wrong
pose will have more marker–measurement associations with
larger Mahalanobis distances. As a result, filters with a small
distance sum c

(l)
k become more likely. Finally, the new filter

weights have to be renormalized.
Over time, hypotheses become unlikely. To save computa-

tion time, we discard hypotheses that are no longer necessary
until only a single hypothesis is left2. In order to discard
hypotheses, we make use of the so-called effective sample
size (ESS). The ESS is a prominent measure in the field
of particle filtering, where the probability distribution of the
system state is described by a set of weighted particles (instead
of only a mean vector and a covariance matrix as in Kalman
filtering). The idea of the ESS is to get information about
the degeneracy of the particle set, i.e., how many particles
have a weight close to zero. According to [3], for a set of P
particles with normalized weights α(p), the ESS is

αESS =
1∑P

p=1(α(p))2
. (8)

2Removing unlikely hypotheses and fusing similar hypotheses are two of
the original pruning techniques proposed by Reid [24].



Due to the normalized weights, it holds that 1 ≤ αESS ≤ P .
For the extreme case that all particles are equally weighted,
that is, no degeneracy, we have αESS = P . For the other
extreme case that only a single particle has a non-zero weight,
we have αESS = 1. Here, we compute (8) with the normalized
filter weights w(l)

k+1 and calculate the number of filters to be
removed in this time step according to Rk = bLk−αESS +εc.
Then, the Rk filters with the smallest weights are removed,
and thus, we also have Lk+1 = Lk −Rk. Finally, we again
have to renormalize the remaining filter weights.

The utilized rounding scheme with 0 ≤ ε < 1 is necessary
to effectively control when the last superfluous filter is
removed if only two filters are left. Note that for ε = 0.5 we
have the usual rounding functionality. If ε would be zero, the
last filter could only be removed when its weight becomes
exactly zero. As this would require many time steps, we set
ε = 0.05. This means that if Lk = 2, the last filter will be
eliminated when its weight drops below 0.5%.

However, it may happen that multiple filters converge to the
true human pose. Consequently, their marker–measurement
associations and Mahalanobis distances become very similar.
As a result, their weights converge to nearly the same non-
zero value, and thus, none of these filters will be removed by
the procedure described above, although their information is
redundant. Hence, we have to check if two filters represent
nearly the same human pose. If so, the filter with the smaller
weight gets removed. We check for similarity based on three
indicators: (i) the Euclidean distance in the root pose is
smaller than a threshold εp, (ii) the largest root orientation
difference is smaller than a threshold εr, and (iii) the largest
joint angle difference is smaller than a threshold εa.

IV. IMPLEMENTATION FOR THE MMM MODEL AND A
VICON OPTICAL MOTION CAPTURE SYSTEM

In this section, we describe a concrete implementation of
our proposed approach for whole-body motion tracking. We
rely on the MMM reference model presented in Section II
(scaled to the body height of the human to be tracked) with its
kinematic model for the human pose, including the placement
of N = 53 markers. In total, J = 48 joint angles are used for
the kinematic model (eyes and fingers are excluded), resulting
in a system state dimension of D = 54. Moreover, root
position and marker positions are measured in millimeters and
root orientation and joint angles are measured in radians (this
is important as it also defines the units of the noise covariance
matrices R

(n)
k and Qk). The marker positions are measured

by a Vicon MX10 system using ten T10 cameras, which is
an optical motion capture system based on passive (reflective)
markers. The system captures at 100 Hz, that is, every 10 ms,
we get a new set of markersMk. For the measurement update,
the measurement noise properties of the Vicon system, i.e., the
covariance matrices R

(n)
k , have to be known. Experimentally,

we have found that the marker positions provided by the
Vicon system are approximately disturbed by a Gaussian
noise with a covariance of R

(n)
k = 10−3 · I3, ∀1 ≤ n ≤ N ,

where I3 denotes the identity matrix of dimension three. To
perform the measurement update, the S2KF is configured

to use S = 351 samples. Furthermore, the system noise
covariance matrix is set to the time-invariant diagonal matrix
Qk = diag(25 · I3, 10−10 · I3, 10−9 · I48). The threshold
for measurement outliers is set to εo = 300 mm and the
thresholds for pose similarity to εp = 1 mm, εr = 0.001 rad,
and εa = 0.01 rad, respectively.

Regarding the initialization of the tracking, on the one
hand, we have to keep the number of initial poses, i.e., filters,
as small as possible to be able to operate in real-time. On the
other hand, we have to cover as many different initial poses
as possible to maximize the probability of converging to the
true human pose. In order to get an adequate number, our
only restriction on the initial pose is that the human subject is
standing upright. Consequently, the initial state means for joint
angles of the legs and torso are the same for all initial poses,
and the focus is on possible arm configurations. Here, we
select five significantly different configurations per arm and
build the Cartesian product for both arms, which results in 25
different poses. Moreover, to cover different root orientations,
each of these 25 poses is rotated in 90 degree steps, i.e.,
the initial yaw angle means are set to ôy0 ∈ {0, π2 , π,

3π
2 }

and the roll and pitch angle means are ôr0 = ôp0 = 0 for
all poses. This leads to a total number of L0 = 100 initial
pose hypotheses/filters. Furthermore, the initial mean r̂0 and
covariance Cr

0 of the root position for all 100 filters are set
to sample mean and sample covariance of the first set of
available marker measurements M0. Last but not least, the
initial covariance matrix for the root orientation is set to
Co

0 = 10−6 · I3, whereas the initial covariance matrix of the
joint angle parameters is set to CΘ

0 = 10−10 · I48. Hence, the
overall initial state covariance matrix for all filters is given
by Ce

0 = diag(Cr
0,C

o
0,C

Θ
0 ).

When the tracking starts, all 100 filters have to process the
incoming measurements. Unfortunately, doing this in real-
time is hardly possible. Nonetheless, the subsequent sets of
measurements are not discarded. Instead, they are queued up
for later processing. If we omitted these measurements, the
result would be a track loss due to potential comprehensive
changes in the human pose and the long time between two
consecutive updates. Consequently, at the beginning of the
tracking, we accept a substantial and non-negligible lag.
However, as evaluations in Section V show, the number
of active filters rapidly decreases and one or two remaining
filters require less than 10 ms. Thus, the tracking approach
can compensate the lag in a short time to finally achieve the
desired real-time capability when only few filters remain.

In summary, due to the avoidance of a special initialization
pose, we are able to offer a user-friendly tracking, as the
subject can simply walk into the area being observed by the
Vicon system and tracking automatically starts if a sufficient
number of marker measurements becomes available. In order
to have a sufficient number of markers for the initialization,
we configure the tracking to start when it receives at least 48
marker measurements for the first time. After that, there is no
restriction on the number of measurements to be processed.



(a) Time: 0.00 s. (b) Time: 0.80 s. (c) Time: 1.80 s. (d) Time: 2.24 s.

(e) Time: 2.68 s. (f) Time: 3.56 s. (g) Time: 3.92 s. (h) Time: 5.36 s.

Fig. 2: A sequence of fast and complex whole-body motions performed by a subject and their pose tracked by our proposed
approach. The images on the right show the performed motions from a time-synchronized video recording, while the images
on the left indicate the estimated pose.

V. EVALUATION

In this section, we evaluate the implementation of the
proposed whole-body motion tracking from Section IV. Since
a ground truth, i.e., the true system state, cannot be obtained
for captured human motions, usual state estimation metrics
such as the normalized estimation error squared (NEES) are
not applicable. Therefore, we studied the convergence and
runtime performance for 20 observed human motions. In 18
of these motions, the tracking attains the correct pose and
also challenging initial poses, such as walking backwards
into the area observed by the motion capture system, pose
no problems.

As an example, we demonstrate a reconstructed sequence
of fast and complex motions in Fig. 2. At the beginning,
the subject walks into the area observed by the Vicon
motion capture system (see Fig. 2a), and the tracking has
not recognized the user yet. After about 0.8 s, the tracking
automatically starts as it obtains 48 marker measurements
for the first time (see Fig. 2b). Note that the subject does
not exhibit the T-pose required by the approach presented
in [9], but instead shows a challenging initial pose with the
arms being folded very close to the body. It can be seen that
after the first measurement update, the pose estimate already
has an approximately correct root pose and root orientation.
After another second, the tracking has already converged to
the correct pose (Fig. 2c). Over time, fast movements of the
body and the arms are performed. This includes several fast
turns, e.g., from Fig. 2c to Fig. 2d, a jump with outstretched
arms (Fig. 2e), another turn (Fig. 2f), fast moving arms
(Fig. 2g), and again a folding of the arms at the end (Fig. 2h).
In conclusion, the good tracking results indicate that the
measurements are correctly associated most of the time.

Fig. 3a shows the varying number of received marker
measurements over time. At the beginning, the subject walks
into the room and more and more markers become visible to
the Vicon system. After 1.8 s, there is a jump in the number
of measurements. This is due to the unfolding of the subject’s
arms as now more of the markers attached to arms and hands
can be measured by the Vicon system. It should be noted that
between 2.5 s and 3 s, we get more than 53 measurements,

and thus, definitively have clutter measurements. Of course,
clutter may also be present at other time steps. After 4.8 s, the
subject folds their arms again, which decreases the number
of measurements (see Fig. 2h).

Fig. 3b depicts the number of active filters used by the
tracking. Prior to 0.8 s, the tracking is inactive and no filter is
in use. At the beginning of the tracking, all initial 100 filters
become active. However, the number of active filters drops
considerably fast. At 1.1 s, only a single filter is left. The
number of active filters massively affects the runtime of the
motion tracking (see Fig. 3c). With 100 active filters, we have
a peak runtime of 170 ms. However, if only a single filter is
left, we measure a runtime of 4 ms on average, resulting in
real-time tracking.

As already mentioned in Section IV, the initially large
runtimes cause a significant lag in the processing of the
received measurements. This is shown in Fig. 3d. The lag
peaks at about 440 ms. That is, the estimation result based on
the first measurements received at 0.8 s is actually available
at 1.24 s. Nevertheless, after the number of active filters drops
significantly, it takes less than 10 ms to update the estimate
and the lag decreases in a linear fashion. At 1.7 s, the lag has
already been completely compensated and we get the tracking
results in real time. In conclusion, it takes only 900 ms to
process measurements in real time after the tracking started.

In general, in our 20 evaluated motions, all filters except
one have been eliminated after a maximum of 1.9 s, and
real-time capabilities are attained in a similar way to the
exemplary motion.

VI. CONCLUSIONS

In this paper, we presented a novel approach to track whole-
body human motions with unlabeled marker measurements
in real time. The approach is based on four key components:
(i) a known kinematic model of the human body that includes
the locations of the attached markers, (ii) constrained sample-
based Kalman filtering, (iii) the LAPJV algorithm, a fast
version of the Hungarian algorithm, to obtain optimal marker–
measurement associations, and (iv) a multiple hypotheses
tracking approach to avoid a special initialization pose and
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Fig. 3: Details of the tracking for the motion shown in Fig. 2.
The evaluation was performed on an Intel Core i7-3770
(3.4 GHz).

convergence to a wrong pose. We implemented the proposed
tracking approach for the MMM reference model and a
Vicon optical marker-based motion capture system, and
evaluated our implementation in various scenarios. From
these experiments, we conclude that the proposed whole-body
motion tracking can accurately estimate the human pose over
time and can handle unavoidable marker occlusions or clutter
measurements easily. Although the MHT approach leads to
substantial time lag at the beginning, it can be compensated
very fast, usually in about a second, and after that the tracking
can operate in real time.
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