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Abstract— For decentralized fusion problems, ellipsoidal in-
tersection has been proposed as an efficient fusion rule that
provides less conservative results as compared to the well-know
covariance intersection method. Ellipsoidal intersection relies
on the computation of a common estimate that is shared by
the estimates to be fused. In this paper, an algebraic reformu-
lation of ellipsoidal intersection is discussed that circumvents
the computation of the common estimate. It is shown that
ellipsoidal intersection corresponds to an internal ellipsoidal
approximation of the intersection of covariance ellipsoids. An
interesting result is that ellipsoidal intersection can be computed
with the aid of the Bar-Shalom/Campo fusion formulae. This is
achieved by assuming a specific correlation structure between
the estimates to be fused.

I. INTRODUCTION

State estimation methods, of which the Kalman filter [1]
is one of the most prominent procedures, are utilized to
infer information about a system’s state. The Kalman filter
recursively computes a state estimate based on prior infor-
mation, a process model, and measurements acquired from
sensor devices. In typical network-based sensor systems [2],
it is often not a single instance that computes an estimate
but a multiplicity of nodes, each of which is equipped with
its own state estimation system. Such distributed estimation
strategies eliminate the need to send all sensor data to
a center node where a single Kalman filter computes an
estimate. Instead, sensor data can be processed locally. With
nodes running local Kalman filters, fusion methods then
provide the means to combine estimates from different nodes.
In a centralized approach, it is at least the data sink that
has to apply a fusion algorithm to the incoming estimates in
order to form a global estimation result. In fully decentralized
estimation networks, nodes can benefit from an exchange of
each other’s estimates by applying fusion methods locally.

Compared to a centralized processing of all acquired mea-
surements, distributed and decentralized processing schemes
often require more elaborate algorithms that take care of
possible correlations between the local estimation errors [3].
Although distributed implementations [4], [5] of the Kalman
filter algorithm can be established, they are often inapplicable
because of being highly susceptible to node failures and
changes in the network topology as discussed in [6], [7].
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Furthermore, such distributed schemes still require a central
data sink where a fused estimate is computed. Compared
with this, fully decentralized estimation systems do not rely
on a dedicated fusion center, and they often consist of sensor
nodes that are each equipped with a local Kalman filter. Each
node independently computes an estimate, which is optimal
given the locally acquired measurements. By exchanging and
fusing estimates, the locally attainable estimation quality can
be further improved. Although fully-decentralized processing
strategies are attractive in many applications, two important
aspects have to be addressed. First, an optimal and consistent
fusion of estimates has to exploit the underlying correlation
structure, which hence must be known. The optimal result
is then given by the Bar-Shalom/Campo fusion rule [8] for
the two-sensor fusion problem or its generalization [9] for
the multi-sensor case. Second, the optimal fusion of all local
estimates does not provide the optimal estimate given all
available measurements with respect to the mean-squared
error [10], i.e., local Kalman filters that exchange and fuse
their estimates do not reach the same estimation quality
as a single Kalman filter that has access to all sensors.
This discrepancy can be addressed by tracklet-based fusion
methods [11], [12] or joint state representations [13], when
certain constraints on the transmission policy are met.

The major problem when estimates are to be fused is
the correct treatment of possible correlations. Although an
optimal reconstruction of correlations is possible for special
network topologies [14], bookkeeping of the correlation
structure is often too cumbersome or even impossible. For
this reason, conservative fusion methods like covariance
intersection (CI) [15]–[17] guarantee consistent fusion re-
sults irrespective of the underlying correlation structure.
Although these methods are suboptimal compared with the
Bar-Shalom/Campo (B/C) fusion rule, [18] have shown that
CI tightly bounds the entirety of possible error covariance
matrices. However, CI often turns out to be too conservative
as strong correlations seldom occur. Starting from this ob-
servation, [19] has proposed to consider the largest internal
ellipsoid in order to compute the fused error covariance
matrix, which is smaller than the covariance matrix reported
by CI. This approach has been revisited in [20] by refining
the computation of the fused estimate. A recent approach
gaining considerable attention is ellipsoidal intersection (EI)
[21]. Its effectiveness has been demonstrated in several case
studies [22] and comparisons [23] with other approaches. In
this work, the derivation of EI is revisited, and an in-depth
analysis is carried out in order to provide additional insights,
and its relationship to the internal ellipsoid approximation
and B/C fusion rule is discussed.



NOTATIONS

An underlined variable x ∈ Rn denotes a real-valued
vector, and lowercase boldface letters x are used for random
quantities. Matrices are written in uppercase boldface letters
C ∈ Rn×n, and C−1 and CT are its inverse and transpose,
respectively. For the ith element in x and the ith diagonal
element in C, the notations (x)i and (C)ii are used. C ≥ C′

implies that the difference C−C′ is positive semi-definite.
The notation (x̂,C) is used for an estimate x̂ of x that has
the error covariance matrix C = E[x̃ x̃T] with x̃ = x̂ − x.
E(ĉ,X) is an ellipsoid with center ĉ and shape matrix X.

II. CONSIDERED FUSION PROBLEM
For the derivation of EI, a special decomposition of the

estimates to be fused is employed [21]. Two consistent
estimates (x̂A,CA) and (x̂B,CB) are considered, and it is
assumed that both estimates can be represented by the three
mutually uncorrelated estimates (λ̂A,ΛA), (λ̂B,ΛB), and
(γ̂,Γ) according to

x̂A = CA

(
Λ−1A λ̂A + Γ−1γ̂

)
(1a)

CA =
(
Λ−1A + Γ−1

)−1
(1b)

and

x̂B = CB

(
Λ−1B λ̂B + Γ−1γ̂

)
(2a)

CB =
(
Λ−1B + Γ−1

)−1
. (2b)

Hence, both estimates share the common estimate (γ̂,Γ).
The corresponding estimation errors become

x̃A = x̂A − x = CA

(
Λ−1A λ̂A + Γ−1γ̂

)
− x

= CA

(
Λ−1A (λ̂A − x) + Γ−1(γ̂ − x)

)
= CA

(
Λ−1A λ̃A + Γ−1γ̃

)
and

x̃B = CB

(
Λ−1B λ̃B + Γ−1γ̃

)
,

which leads to the error cross-covariance matrix

CAB = CT
BA = E

[
x̃Ax̃T

B

]
= CAΓ−1CB (4)

since λ̃A, λ̃B, and γ̃ have been assumed to be mutually

uncorrelated, i.e., E[λ̃Aλ̃
T

B ] = E[λ̃Aγ̃
T] = E[λ̃Bγ̃

T] = 0.

A. Optimal Fusion With Known Common Information
When the cross-covariance matrix CAB is known and can

be exploited, the B/C fusion formulae [8] encompass the
optimal linear combination of the estimates with respect to
minimizing the mean-squared error. The estimates are fused
according to

x̂B/C = KB/C x̂A + LB/C x̂B (5a)

and

CB/C = KB/CCAKT
B/C + LB/CCBLT

B/C+

KB/CCABLT
B/C + LB/CCBAKT

B/C (5b)

= CA − LB/C

(
CA −CAB

)T

with the gains KB/C and LB/C = I−KB/C given by

KB/C =
(
CB −CBA

)
·
(
CA + CB −CAB −CBA

)−1
, (6a)

LB/C =
(
CA −CAB

)
·
(
CA + CB −CAB −CBA

)−1
. (6b)

The gains are determined such that the trace of (5b), which
corresponds to the mean-squared error, is minimized. It is
important to notice that both (1) and (2) constitute the
optimal fusion results of uncorrelated estimates:
• In (1), (γ̂,Γ) has been fused with (λ̂A,ΛA).
• In (2), (γ̂,Γ) has been fused with (λ̂B,ΛB).

More precisely, (1) and (2) correspond to the important
special case of (5) where the cross-covariance matrix is zero
and estimates are uncorrelated.

Although formulae (5) represent the optimal linear com-
bination of estimates, they do not necessarily provide the
optimal estimate given the available information [10]. Inter-
estingly, this discrepancy can also be seen for the special
decompositions (1) and (2). Due to these decompositions,
the optimal fusion of the estimates (x̂A,CA) and (x̂B,CB)
corresponds to the optimal fusion1 of the three partial esti-
mates (λ̂A,ΛA), (λ̂B,ΛB), and (γ̂,Γ), i.e.,

x̂opt = Copt

(
Λ−1A λ̂A + Λ−1B λ̂B + Γ−1γ̂

)
(7a)

and

Copt =
(
Λ−1A + Λ−1B + Γ−1

)−1
. (7b)

This fusion rule is the result of determining the optimal
gains for the combination K1λ̂A + K2λ̂B + K3γ̂ such that
the mean-squared error is minimized. Again, it has been
exploited that the partial estimates have mutually uncorre-
lated errors. By considering the corresponding covariance
ellipses, the example in Fig. 1(a) immediately unveils that the
fusion result (7) differs from (5). The fusion strategy (7) even
reports a lower error covariance matrix, i.e., Copt ≤ CB/C,
as illustrated in Fig. 1(b). Consequently, if a decomposition
according to (1) and (2) is known, it should be exploited by
means of (7) instead of (5). This observation is underpinned
by the following theorem.

Theorem 1: The fusion rule (7) always provides a
smaller error than the B/C fusion rule (5). More precisely,
the inequality

CB/C ≥ Copt (8)

holds.
Proof: The proof is presented in Appendix A.
The fusion rule (7) can also be reorganized into

x̂opt = Copt

(
C−1A x̂A + C−1B x̂B − Γ−1γ̂

)
(9a)

and

Copt =
(
C−1A + C−1B − Γ−1

)−1
. (9b)

This reformulation implies that the estimates (x̂A,CA) and
(x̂B,CB) can fused as if they are uncorrelated (CAB = 0)

1The formulae (1), (2), and (7) correspond to the information form [24]
of the Kalman filter and can be computed recursively.
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(a) Fusion results of two estimates (x̂A,CA) and (x̂B,CB) with decom-
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(b) Fusion results of Fig. (a) centered at the origin.

Fig. 1. Comparison of fusion methods when the decompositions (1) and (2)
can be exploited.

and the common estimate (γ̂,Γ) can then be subtracted after
fusion. This strategy is employed in the channel filter [25]
and its nonlinear counterpart [26], where common informa-
tion is kept track of. It is important to emphasize that (7)
can only be applied if a common estimate (γ̂,Γ) exists and
can be exploited.

B. Suboptimal Fusion With Unknown Common Information

An often encountered problem is the treatment of an
unknown correlation structure when estimates are to be
fused. The most general solution is provided by CI [15],
which yields consistent fusion results irrespective of the
unknown cross-covariance matrix CAB. For this purpose, CI
replaces (5) by a conservative formulation, and in particular,
(5b) is replaced by an upper bound for all possible CAB. It
has been shown in [18] that CI is the optimal approach when
the cross-covariance matrix CAB is unknown.

The EI algorithm has been proposed as a conservative
fusion rule for state estimates given by (1) and (2) when the
common information (γ̂,Γ) is unknown to the fusion system.
By design, EI is tailored to the specific correlation structure
in (4). A simple example unveils that correlations between
two estimates may display a different structure than (4).

Example 2: Possible covariance matrices are CA =
[ 4 0
0 1 ], CB = [ 1 0

0 4 ] with cross-covariance matrix CAB =
[ 2 0
0 2 ]. According to (4), the common term would yield Γ−1 =

C−1A CABC−1B = [ 0.5 0
0 0.5 ]. Apparently, the differences Λ−1A =

C−1A − Γ−1 and Λ−1B = C−1B − Γ−1 are not positive semi-
definite, which is in conflict with (1b) and (2b).

As a consequence, EI does not constitute a general conser-
vative fusion rule as CI does. However, it is often desirable
to employ fusion methods that are less conservative than CI.
Keeping Theorem 1 in mind, we can expect that exploiting

the decompositions (1) and (2) for fusion yields better results
even if conservative approximations of the parameters (γ̂,Γ)
are required. The practical relevance of EI can be seen in sen-
sor networks where information is transmitted over multiple
hops and intermediate nodes fuse the received information.
In this case, several nodes may share the same information,
which leads to the decompositions (1) and (2). Using EI for
fusion then circumvents the need to bookkeep the already
incorporated information. In the following sections, the EI
fusion formulae are reviewed, analyzed, and reformulated.

III. REVIEW OF ELLIPSOIDAL INTERSECTION

The ellipsoidal intersection (EI) method has been derived
in [21] as a conservative fusion rule for estimates that
share unknown common information. For the purpose of
computing a consistent estimate irrespective of the common
information (γ̂,Γ), an estimate (γ̂

EI
,ΓEI) with maximum

possible Γ−1EI is determined that can be subtracted from the
fusion result (9) in place of the actual but unknown common
estimate.

From the decompositions (1b) and (2b) of the correspond-
ing covariance matrices, it follows that the unknown common
information (γ̂,Γ) has to obey the inequalities

CA ≤ Γ and CB ≤ Γ . (10)

Consequently, ΓEI has to satisfy (10) and to be as small as
possible in order to maximize its inverse. For this reason,
the matrix ΓEI is designed to be the shape matrix of
the minimum-volume ellipsoid that encloses the ellipsoids
related to CA and CB, i.e., (10) is reformulated to E(0,CA)∪
E(0,CB) ⊆ E(0,ΓEI). As explained in [21], the smallest
covering ellipsoid can be computed by means of a joint
diagonalization

DA = TCATT and DB = TCBTT (11)

of CA and CB with an appropriate transformation matrix T.
By determining the component-wise maximum

(D̄)ii = max{(DA)ii, (DB)ii} , (12)

we obtain the desired common estimate matrix

ΓEI = T−1D̄T−T . (13)

In order to compute γ̂
EI

, the explicit formula

γ̂
EI

=
(
C−1A + C−1B − 2Γ−1EI + 2ηI

)−1·((
C−1A − Γ−1EI + ηI

)
x̂A +

(
C−1B − Γ−1EI + ηI

)
x̂B

)
(14)

is employed in [21], where η > 0 is a regularization factor to
avoid numerical instabilities. The parameters (13) and (14)
enter (9) so as to obtain the fused mean x̂EI according to

x̂EI = CEI

(
C−1A x̂A + C−1B x̂B − Γ−1EI γ̂EI

)
. (15a)

and the fused covariance matrix CEI according to

C−1EI = C−1A + C−1B − Γ−1EI . (15b)
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Fig. 2. Internal approximation of the intersection and external approxima-
tion of the union.

In the following section, an algebraic reformulation of
the EI fusion formulae is proposed, which also reveals an
important relationship to other fusion rules.

IV. REFORMULATIONS AND SIMPLIFICATIONS
OF ELLIPSOIDAL INTERSECTION

In this subsection, a reformulation of EI is discussed
that avoids an explicit computation of the parameters γ̂

EI
and ΓEI. It turns out that the B/C fusion formulae can be
employed to compute (x̂EI,CEI). In doing so, a specific
correlation structure between the estimates to be fused is
assumed.

A. Internal Ellipsoidal Approximation

In a first step, it is shown that CEI can directly be com-
puted. The common matrix ΓEI in (13) has been designed
as a minimum upper bound (12) on the covariance matrices.
The joint diagonalization (11) can directly be applied to the
fused covariance matrix (15b), which yields

DEI = TCEIT
T =

(
D−1A + D−1B − D̄−1

)−1
.

This matrix has the diagonal components

(DEI)ii =
(

1
(DA)ii

+ 1
(DB)ii

− 1
max{(DA)ii,(DB)ii}

)−1
= min

{
(DA)ii, (DB)ii

}
,

(16)

Hence, CEI is computed by taking the minimum diagonal
components instead of the maximum components as in (12),
and CEI can be obtained without explicitly computing ΓEI

Corollary 3: The matrix CEI is the shape matrix of
the Löwner-John ellipsoid E(0,CEI), i.e., maximum-volume
ellipsoid, contained in the intersection E(0,CA)∩E(0,CB).

Fig. 2 illustrates the relationship pointed out in the
corollary. Such a construction of an internal ellipsoidal
approximation has also been suggested by [19]. There, the
computation of the fused mean has not been adapted, which
is an important difference to EI. Also, the refinement of the
internal approximation in [20] yields a mean different to EI.
In the next step, it is shown that EI computes a mean that
is consistent with fused covariance matrix CEI.

B. Direct Computation of the Fusion Result

For the fused covariance matrix (15b), a direct computa-
tion, which avoids the calculation of (13), is already given
by (16). The common mean (14) has been derived in [21] by

considering the transformed vectors Tx̂A and Tx̂B. In this
transformed state space, the common mean (14) is equivalent
to

(
Tγ̂

EI

)
i

=


(Tx̂A)i if (DA)ii > (DB)ii ,

(Tx̂B)i if (DA)ii < (DB)ii ,
1
2

(
(Tx̂A)i + (Tx̂B)i

)
if (DA)ii = (DB)ii .

(17)
The latter case also reveals the reason why the regularization
in (14) is needed: Applying the joint diagonalization to the
matrices in (14) it can be seen that the matrices become
singular if (DA)ii = (DB)ii holds for some diagonal entries.

Analogously, the fused mean (15a) can also be expressed
in the transformed state space, which yields

Tx̂EI = TCEI

(
C−1A x̂A + C−1B x̂B − Γ−1EI γ̂EI

)
= TCEIT

TT−T
(
C−1A x̂A + C−1B x̂B − Γ−1EI γ̂EI

)
= DEI

(
D−1A Tx̂A + D−1B Tx̂B − D̄−1Tγ̂

EI

)
.

By inserting (12), (16), and (17), we arrive at

(
Tx̂EI

)
i

=


(Tx̂B)i if (DA)ii > (DB)ii ,

(Tx̂A)i if (DA)ii < (DB)ii ,
1
2

(
(Tx̂A)i + (Tx̂B)i

)
if (DA)ii = (DB)ii .

(18)
Note the difference in the first two cases. This means
that

(
Tx̂EI

)
i

consists of the element (Tx̂A)i or (Tx̂B)i
depending on which one is attributed to the smaller diagonal
element of DA and DB. Consequently, the fused mean can
be computed in the transformed state space without the need
for explicitly calculating γ̂

EI
. This reformulation offers the

advantage that no regularization factor has to be introduced.
Another possibility to compute the EI fusion result is

related to the B/C formulae, as pointed out in the following
considerations. For this purpose, we assume that the cross-
covariance matrix (4) of the estimates to be fused is given
by CAB = CAΓ−1EI CB, which implies that ΓEI is assumed
be the actual covariance matrix of the (unknown) common
estimate in (1) and (2). It is an interesting observation that
CAB is then symmetric and is given by

CAB
(4)
= CAΓ−1EI CB

(13)
= T−1DA D̄−1 DBT−T = CEI , (19)

where the latter equation follows from

(DA)ii (D̄)−1ii (DB)ii = (DA)ii(DB)ii
max{(DA)ii,(DB)ii}

= min
{

(DA)ii, (DB)ii
}
.

Instead of combining the estimates with the EI fusion
rule (15), we apply the B/C fusion rule (5) by employing
the assumed correlation structure (19). The fusion result (5)
then becomes

x̂B/C
(5a)
= KB/C x̂A + LB/C x̂B (20a)

and

CB/C
(5b)
= KB/CCAKT

B/C + LB/CCBLT
B/C+

KB/CCEIL
T
B/C + LB/CCEIK

T
B/C ,

(20b)



where the gains KB/C and LB/C = I−KB/C are given by

KB/C
(6a)
=
(
CB −CEI) ·

(
CA + CB − 2CEI

)−1
(21a)

LB/C
(6b)
=
(
CA −CEI) ·

(
CA + CB − 2CEI

)−1
(21b)

Although Theorem 1 leads us to expect that (20) should be
different from (15), the following theorem proves us wrong.

Theorem 4: The combination (20) yields the same result
as the EI fusion rule (15).

Proof: The proof of this theorem can be found in
Appendix B.

Remark 5: In order to circumvent numerical instabilities,
the gains (21) can be modified according to

KB/C =
(
CB − C̃EI) ·

(
CA + CB − 2C̃EI

)−1
(22a)

LB/C =
(
CA − C̃EI) ·

(
CA + CB − 2C̃EI

)−1
(22b)

with C̃EI = CEI + ηI , η > 0 as it has been done in (14).
The fusion rule (20) offers the advantage that (13) and (14)

do not have to be explicitly computed. The EI fusion rule is
equivalent to the B/C fusion rule when it is assumed that the
estimates have the cross-covariance matrix (19). It is an inter-
esting observation that that the fused covariance matrix (20b)
is equal to the assumed cross-covariance matrix (19). Both
the original formulation of EI and its reformulation in terms
of the B/C formulae are prone to numerical instabilities. An
alternative is the direct computation of the fused mean and
covariance matrix by (18) and (16) in the transformed state
space. Matlab functions of the presented reformulations can
be downloaded from www.bennoack.net/EI.

The presented reformulations of EI prove to be useful
for efficient implementations of the algorithm. However,
it remains an open question under which conditions EI
can be considered to constitute a consistent fusion rule.
This question is addressed in [27] where also a different
parameterization of the common estimate with improved
consistency is proposed.

V. CONCLUSIONS
The EI fusion rule has been proposed as an alternative

to CI and yields less conservative results. EI is tailored to a
specific correlation structure that originates from an unknown
common estimate shared by the estimates to be fused.
With the aim of conservativeness, EI computes the common
estimate with the smallest possible covariance matrix, i.e.
maximum inverse covariance matrix, that can be subtracted
from the fusion result.

The estimate provided by the EI fusion rule is related
to a maximum internal ellipsoid of the intersection of the
covariance ellipsoids that correspond to the estimates to be
fused. The considerations in this paper revealed that EI can
be computed with the aid of the B/C fusion rule. In doing
so, it is implicitly assumed that the considered estimates
share a common estimate with covariance matrix ΓEI. This
parameterization constitutes an important special case of
Theorem 1 for which equality holds. Employing the B/C
rule offers the advantage that the parameters of the common
estimate do not need to be computed explicitly.

APPENDIX
A Proof of Theorem 1

The inequality (8) to be considered is equivalent to

C−1opt ≥ C−1B/C (A.1)

In order to prove this inequality, it must be shown that the
difference C−1opt − C−1B/C is positive (semi-)definite. As for
instance stated in [28], the B/C fusion rule can be rewritten
into

C−1B/C =
[
I I

] [CA CAB

CBA CB

]−1 [
I
I

]
= C−1A +

(
I−C−1A CAB

)(
CB −CBAC−1A CAB

)−1
(
I−CBAC−1A

)
.

By exploiting the specific correlation structure (4), this
matrix can be further rewritten to

C−1B/C = C−1A +
(
I− Γ−1CB

)(
CB −CBΓ−1CAΓ−1CB

)−1
(
I−CBΓ−1

)
.

= C−1A +
(
C−1B − Γ−1

)(
C−1B − Γ−1CAΓ−1

)−1
(
C−1B − Γ−1

)
.

With (9b), the inequality (A.1) becomes

(C−1B − Γ−1) ≥
(
C−1B − Γ−1

)
·(

C−1B − Γ−1CAΓ−1
)−1(

C−1B − Γ−1
)
.

By pre- und post-multiplying with (C−1B − Γ−1)−1, it re-
mains to be shown that(

C−1B − Γ−1
)−1 ≥ (C−1B − Γ−1CAΓ−1

)−1
holds. This follows from Γ−1CAΓ−1 ≤ Γ−1, which is a
consequence of CA ≤ Γ in (10).

B Proof of Theorem 4

In order to show the equivalence of the formulae (15)
and (20), we first analyze (20a) by using the transformation

Tx̂B/C = TKB/Cx̂A + TKB/Cx̂B

= K̄B/CTx̂A + L̄B/CTx̂B

(B.1)

with
K̄B/C = TKB/CT−1

= T
(
CB −CEI) ·

(
CA + CB − 2CEI

)−1
T−1

= T
(
CB −CEI)T

TT−T
(
CA + CB − 2CEI

)−1
T−1

=
(
DB −DEI) ·

(
DA + DB − 2DEI

)−1
and

L̄B/C =
(
DA −DEI) ·

(
DA + DB − 2DEI

)−1
.

With the definition (16) of DEI, the components of these
diagonal gains are

(
K̄B/C

)
ii

=


0 if (DA)ii > (DB)ii ,

1 if (DA)ii < (DB)ii ,

∗ if (DA)ii = (DB)ii .

http://www.bennoack.net/EI
www.bennoack.net/EI


and (
L̄B/C

)
ii

=


1 if (DA)ii > (DB)ii ,

0 if (DA)ii < (DB)ii ,

∗ if (DA)ii = (DB)ii .

(B.2)

For the first two cases, it becomes apparent that (B.1) is equal
to (18). The third case (DA)ii = (DB)ii deserves special
attention because of a division by zero. As it has been done
in (14), a regularization matrix ηI with small η > 0 can be
added to DEI. In this case, the entry ∗ becomes 1

2 , and the
equality can also be seen for the third case. The regularized
gains (22) are hence used to treat numerical instabilities.

To show equality for the fused covariance matrices (15b)
and (20b), the latter matrix is written as

CB/C
(5b)
= CA − LB/C

(
CA −CEI

)
.

We apply the transformation matrix T from (11) and obtain

DB/C = TCB/CTT

= TCATT −TLB/C

(
CA −CEI

)
TT

= DA − L̄B/C

(
DA −DEI

)
.

By taking into account the result (16) and using (B.2), the
diagonal components yield

(
DB/C

)
ii

=


(DB)ii if (DA)ii > (DB)ii ,

(DA)ii if (DA)ii < (DB)ii ,

(DA)ii if (DA)ii = (DB)ii ,

which is the minimum (16) of the diagonal components of
DA and DB. Thus, CB/C = CEI holds, and the combina-
tion (20) is equal to the EI fusion rule (15).
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