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Abstract— In range-based pose tracking, the translation and
rotation of an object with respect to a global coordinate system
has to be estimated. The ranges are measured between the
target and the global frame. In this paper, an intelligent de-
composition is introduced in order to reduce the computational
effort for pose tracking. Usually, decomposition procedures only
exploit conditionally linear models. In this paper, this principle
is generalized to conditionally integrable substructures and
applied to pose tracking. Due to a modified measurement
equation, parts of the problem can even be solved analytically.

I. INTRODUCTION

In many applications, the estimation of an object pose,
i.e., the translation and the rotation, is essential, e.g., in
large scale telepresence (Fig. 1) [1]. In [1], the pose of a
human has to be tracked in order to steer the teleoperator. For
tracking the user’s pose, several emitters are located at known
positions in a global coordinate system. They are emitting
signals that are received by several sensors attached to the
target frame. Based on the emitted and received signals,
ranges between emitters and sensors can be determined. Due
to disturbances and a nonlinear measurement equation, which
describes the relationhip between measured ranges and pose,
an exact estimator cannot be applied and so approximative
estimators have to be used. Algorithms for estimating the
pose based on range measurements are closed-form solutions
[2], gradient descent algorithms [1], or state estimators [3].
Popular state estimators rely on the Gaussian assumption [4],
[5], [6], e.g., the Unscented Kalman Filter, where all involved
random variables are described by mean and covariance.
Furthermore, the random variable for the measurement and
for the state are assumed to be jointly Gaussian distributed.
In order to calculate the mean and covariance, sample-
based approaches are used. For an efficient implementation,
the structure of the measurement and system equation can
be exploited and so the number of sample points can be
reduced. For conditionally linear substructures, the reader
is referred to [3] and [7]. In order to reduce the number
of sample points, the decomposition in conditionally linear
substructures can be generalized to conditionally integrable
substructures. In this case, nonlinear parts of the problem
can be solved in closed form.
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Fig. 1. Person using large scale telepresence.

Compared to the previous approach in [3], where the
density of the translation and rotation has to be approximated
for the filter step, merely the density of the rotation is
processed approximately in the proposed approach, while the
remaining part can be calculated in closed form. In doing so,
the number of sample points can be decreased.

The structure of the paper is as follows. In the problem
formulation in Sec. II, the measurement (see Sec. II-A)
and system equation (see Sec. II-B) for pose tracking are
described. The proposed approach makes use of a state
estimator, the generalized Gaussian assumed density filter,
which is described in Sec. II-C. This filter consists of a
prediction step (Sec. II-C.1) and a filter step (Sec. II-C.2).
In the filter step, the assumption that measurements and
the state are jointly Gaussian distributed is applied. The
proposed approach for pose tracking is shown in Sec. III.
First, the measurement equation is modified in Sec. III-
A. Based on this modified measurement equation, parts of
the problem can be solved in closed form, where first the
decomposition is explained in Sec. III-B. This decomposition
is then used in order to calculate the mean (Sec. III-C), the
covariance (Sec. III-D), and the cross-covariance (Sec. III-
E), which is required for the filter step (see Sec. II-C.2).
A short wrap-up of the filter step is shown in Sec. III-
F. The proposed approach is compared to the standard
decomposition via simulations in Sec. IV. Finally, the paper
ends with conclusions.

II. PROBLEM FORMULATION

In pose tracking, the translation tk and the rotation rk of
an extended object have to be estimated. Due to the fact that



the object is in motion, it is essential to consider the dynamic
behavior of the object by means of the translation velocity
ṫk and angular velocity wk. In order to estimate the state xk
of the object

xk =
[
tT
k ṫ

T
k rT

k wT
k

]T
,

a state estimator is used.

A. Measurement Equation

The measurement equation describes the relationship be-
tween the measurement and the state. In range-based pose
estimation, the measured ranges depend on the known land-
marks located on the extended target, known landmarks in a
static global coordinate system, and the unknown translation
and rotation of the object with respect to the global coordi-
nate system. The relationship between measured ranges and
the translation and rotation is given by

di,j,k = ||Lj −D(rk) ·M i − tk − vi,j,k||2 , (1)

where D(·) is the rotation matrix parametrized by the vector
rk, which describes the rotation. Lj is the position of the
jth landmark with respect to the global coordinate system
and M i is the position of the ith landmark with respect
to the target coordinate system. vi,j,k is the measurement
noise between landmark Lj and landmark M i. di,j,k is the
measured range between these two landmarks.

The rotation matrix can be parameterized by quaternions,
Euler angles, roll-pitch-yaw, or a rotation vector [8]. In this
paper, the parameterization of the rotation matrix is based
on the rotation vector [3] according to

D(rk) = I +
sin (‖rk‖)
‖rk‖

·H(rk)

+
1− cos (‖rk‖)
‖rk‖

2 ·H(rk) ·H(rk) ,

where I is the identity matrix and H is a skew-symmetric
matrix given by

H(rk) =

 0 −rz ry
rz 0 −rx
−ry rx 0


for the three-dimensional space.

B. System equation

The system equation describes how the state evolves over
time. In state estimation, the system equation is used to
predict the state at the next time step when a new mea-
surement is taken. In the considered example, two separate
motion models are assumed, one for the translation and the
second for the rotation. The discrete-time motion model for
the translation is given by a linear equation according to[

tk+1

ṫk+1

]
= A ·

[
tk
ṫk

]
+ ωtk ,

where the process noise ωtk is assumed to be Gaussian
distributed with covariance Qt [9]. The matrix A and the
covariance Qt are given by

A =

[
I ∆t · I
0 I

]
, Qt =

[
∆3

t

3 Qt
c

∆2
t

2 Qt
c

∆2
t

2 Qt
c ∆t ·Qt

c

]
,

where ∆t is the sampling time and Qt
c is the covariance of

the process noise from the continuous-time system model
Qt
c = diag(

[
Qtc,x Qtc,y Qtc,z

]
).

The evolution of the rotation vector over time is described
by a nonlinear equation [10], [11]

rk+1 = rk+

∆t · (I + 0.5H(rk) + a(rk) ·H(rk) ·H(rk))︸ ︷︷ ︸
Λ(rk)

·wk ,

with

a(rk) =
1− 0.5||rk||
||rk||2

· cot( ||rk||
2 ) .

The system model for the angular velocity wk is assumed
to be

wk+1 = wk + ωwk ,

where ωwk is the process noise that affects the angular
velocity. The process noise has zero mean and is Gaussian
distributed with covariance Qw.

The resulting system model for the pose tracking scenario
can be written as

xk+1 =

A 0 0
0 I Λ(rk)
0 0 I

 · xk + ωk , (2)

where the covariance of the process noise ωk contains the
covariance of the process noises from the translation model
Qt and the rotation model Qw

Q =

Qt 0 0
0 0 0
0 0 Qw

 .

Furthermore, the rotation vector has to be bounded. If the
norm of the rotation vector ||rk|| > π, then the transformed
rotation vector is given by rnewk = rk · (1− 2π

||rk||
).

For the rest of the paper, the time index k is omitted.

C. Recursive State Estimation

In state estimation, filtering and prediction are performed
recursively. The two steps depend on the measurement equa-
tion (1) and the system equation (2), respectively. Further-
more, it is assumed that the state x can be described by the
mean µx and the covariance Cx according to

µx =


µt

µṫ

µr

µw

 , Cx =


Ct Ct,ṫ Ct,r Ct,w

Cṫ,t Cṫ Cṫ,r Cṫ,w

Cr,t Cr,ṫ Cr Cr,w

Cw,t Cw,ṫ Cw,r Cw

 .



1) Prediction Step: In the prediction step, the estimated
mean µx,e and covariance Cx,e of the previous filter step
as well as the probabilistic model according to the system
equation (2) are used in order to determine the predicted
mean µx,p and covariance Cx,p. Due to the fact that the
system model is conditionally linear, i.e., if the rotation
vector is set to a fixed value, the system model becomes
linear and the prediction for each value can be performed by
using the Kalman predictor equation. Based on the predicted
quantities for each fixed value, the predicted mean and
covariance are calculated [3].

2) Filter Step: In the filter step, the state is updated based
on the actual measurement ẑ by using Bayesian inference.
Due to the nonlinear measurement equation (1) the filter
step cannot be solved in closed form. Hence, due to the
assumption that the joint density of the measurement process
and the state is Gaussian distributed, the estimated mean µx,e

and covariance Cx,e can be efficiently calculated by using

µx,e = µx,p + Cx,z · (Cz)−1(ẑ − µz) , (3)

Cx,e = Cx,p −Cx,z · (Cz)−1 ·Cz,x ,

where Cx,z is the cross-covariance between the state and
the measurement, Cz is the covariance, and µz the mean
of the measurement process z. These quantities depend on
the considered nonlinear function h(x,v) and the involved
densities for the state x and the noise v and are given by

µz = Ex,v{h(x,v)} , (4)

Cz = Ex,v{(h(x,v)− µz) · (h(x,v)− µz)T} ,
Cx,z = Ex,v{(x− µx,p) · (h(x,v)− µz)T} .

In general, these quantities cannot be calculated in closed
form. However, some classes of nonlinear functions lead to
analytic expressions [12]. In the following, 1. the measure-
ment equation is modified to a polynomial function and 2. the
density of the state is decomposed in order to solve parts of
the problem in closed form.

For the rest of the paper, the indices for the predicted and
estimated state are omitted.

III. SEMI-ANALYTIC LINEARIZATION
FOR SOLVING THE FILTER STEP

A. Modified Measurement Equation

In order to achieve that a part of the filter step can be
solved in closed form, the measurement equation (1) is
squared, which results in

(di,j)
2 = hi,j(x,v) (5)

= (g
i,j

(r)− t− vi,j)
T · (g

i,j
(r)− t− vi,j) ,

with

g
i,j

(r) = Lj −D(r) ·M i . (6)

Furthermore, it is assumed that squared ranges z are mea-
sured according to

zi,j := (di,j)
2 ,

i.e., if a measurement d̂i,j is taken, this measurement is
mapped to the new measurement ẑi,j by using

ẑi,j = (d̂i,j)
2 . (7)

For all measured ranges from i = 1, . . . , N and j =
1, . . . ,M , the nonlinear measurement equation is given by

z = h(t,v, g(r)) ,

where N is the number of landmarks with respect to the
target frame and M is the number of landmarks with respect
to the global coordinate system. v is the measurement
noise, which has zero mean and is Gaussian distributed with
covariance Cv given by

Cv =



Cv
1 . . . Cv

1,j . . . Cv
1,N ·M

...
...

...
...

...
Cv
i,1 . . . Cv

i,j . . . Cv
i,N ·M

...
...

...
...

...
Cv
N ·M,1 . . . Cv

N ·M,j . . . Cv
N ·M

 ,

where the submatrix Cv
i,j describes the covariance between

the landmarks from the different coordinate systems.

B. Decomposition
In order to decompose the problem into parts that can be

solved in closed form, the density of the state f(x) can be
written as

f(x) = f(t, ṫ, w|r) · f(r) . (8)

Furthermore, the density for the rotation f(r) is approxi-
mated by a sample-based representation according to

f(r) ≈
L∑
u=1

wu · δ(r − µu) , (9)

where L is the number of sample points, µ
u

the sample
positions, wu the sample weights, and δ(·) the Dirac delta
distribution. For determining the sample points µ

u
, several

sampling schemes such as the UKF [4] or [5], [6] can be
applied.

Using (9) in (8), for a single sample point µ
u

the condition
density f(xa|r) with

xa =
[
tT ṫ

T
wT
]T

,

can be written as f(xa|µ
u
) = N (xa − µa

u
,Ca) with mean

and covariance

µa
u

=

µ
t
u

µṫ
u

µw
u

 =

µtµṫ
µw

+

Ct,r

Cṫ,r

Cw,r

 · (Cr)−1 · (µ
u
− µr) ,

Ca =

 Ca
t Ca

t,ṫ
Ca
t,w

Ca
ṫ,t

Ca
ṫ

Ca
ṫ,w

Ca
w,t Ca

w,ṫ
Ca
w


=

 Ct Ct,ṫ Ct,w

Cṫ,t Cṫ Cṫ,w

Cw,t Cw,ṫ Cw

−
Ct,r

Cṫ,r

Cw,r

 (Cr)−1

Ct,r

Cṫ,r

Cw,r

T

.

(10)



C. Mean

In order to calculate the required mean µz in (4), (8) and
(9) are used to obtain

µz = Ex,v{h(t,v, g(r))}

≈
L∑
u=1

wu

∫∫
h(t, v, g(r))f(xa|µ

u
)δ(r − µ

u
)f(v) dv dx .

Due to the sifting property of the Dirac delta distribution, the
integral for the rotation variable can be solved. Accordingly,
the nonlinear function in (5) then only depends on the
translation. The variable for the velocity (translational and
angular velocity) can be marginalized. The predicted mean
is then given by

µz ≈
L∑
u=1

wu

∫∫
h(t, v, g(µ

u
)) · f(xa|µ

u
) · f(v) dv dxa

=

L∑
u=1

wu

∫∫
h(t, v, g(µ

u
)) · f(t|µ

u
) · f(v) dv dt

=

L∑
u=1

wu · Et,v{h(t,v, g(µ
u
))} . (11)

The function h(·) contains all combinations between the
landmarks in the target and global coordinate system and
is given by

h(t,v, g(µ
u
)) = KT · ((g(µ

u
)− 1N ·M ⊗ t− v)◦

(g(µ
u
)− 1N ·M ⊗ t− v)) ,

where ⊗ is the Kronecker product, ◦ the element-wise
product, 1 is the one-vector, D is the dimension of t, and
K = IN ·M ⊗ 1D. The vector g(µ

u
), which depends on the

sample points µ
u

, consists of the entries from (6) and is
given by

g(µ
u
) =

[
g

1,1
(µ
u
)T . . . g

N,1
(µ
u
)T . . . g

N,M
(µ
u
)T
]T
.

For calculating the mean µz , a new variable f
u

is introduced,
which is defined by

f
u

:= g(µ
u
)− 1N ·M ⊗ t− v .

The density of the variable f
u

is Gaussian distributed due
to the linear relation. The mean and covariance are given by

µf
u

= g(µ
u
)− 1N ·M ⊗ µtu , (12)

Cf = Cv + (1N ·M · (1N ·M )T)⊗Ca
t ,

where the quantities µt
u

and Ca
t are stemmed from µa

u
and

Ca with respect to the translation (10). Based on this new
random variable, the expected value (11) for a fixed value
for µ

u
is calculated as

Et,v{h(t,v, g(µ
u
))} = Et,v{h(·)} = Ef

u
{KT · (f

u
◦ f

u
)}

(13)

= KT · (µf
u
◦ µf

u
+ diag(Cf )) .

In order to determine the mean µz , the expected value for
every fixed value µ

u
u = 1, . . . , L has to be calculated. The

mean µz is then given by

µz =

L∑
u=1

wu ·KT · (µf
u
◦ µf

u
+ diag(Cf )) . (14)

D. Covariance

Similar to the calculation of the mean, the covariance is
calculated according to

Cz =

L∑
u=1

wu · Et,v{(h(t,v, g(µ
u
))− µz)

· (h(t,v, g(µ
u
))− µz)T} . (15)

Due to the linearity of the expectation operator, each sum-
mand of the product

Et,v{(h(·)− µz) · (h(·)− µz)T}

can be calculated separately. The product Et,v{h(·) · h(·)T}
for the variable f

u
is given by

Et,v{h(·) · h(·)T}
= Ef

u
{KT · (f

u
◦ f

u
) · (KT · (f

u
◦ f

u
))T} . (16)

The matrix K can be pulled out of the integral, which results
in

Ef
u
{h(·) · h(·)T} = KT · Ef

u
{(f

u
◦ f

u
) · (fT

u
◦ fT

u
)} ·K .

Furthermore, the Cartesian product of the squared variable
f
u

is written as the squared Cartesian product of the variable
f
u

, which is given by

Ef
u
{h(·) · h(·)T} = KT · Ef

u
{(f

u
· fT

u
) ◦ (f

u
· fT

u
)} ·K .

The expected value of the matrix Ef
u
{(f

u
· fT

u
) ◦ (f

u
·

fT
u
)} can be calculated separately. Each entry of the matrix

corresponds to Ef
u
{(fu,i)2 · (fu,j)2}, which is a fourth-

order non-central moment according to

Efu,i,fu,j
{(fu,i)2 · (fu,j)2} =((

µfu,i

)2

+ Cfi,i

)
·
((

µfu,j

)2

+ Cfj,j

)
+ 4 · µfu,i · µ

f
u,j · C

f
i,j + 2 ·

(
Cfi,j

)2

,

where µfu,i is the ith entry of the vector µf
u

and Cfi,j is the
entry (i, j) of the matrix Cf for i = 1, . . . , N ·M ·D and
j = 1, . . . , N ·M ·D. According to this, the expected value
of the matrix in (16) is given by

Et,v{h(·) · h(·)T} = Et,v{h(·)} · Et,v{h(·)}T+ (17)

KT ·
(

4 ·
(
µf
u
·
(
µf
u

)T
)
◦Cf + 2 ·Cf ◦Cf

)
·K ,

where the expected value for Et,v{h(·)} is given in (13).



E. Cross-Covariance
The cross-covariance is separated into the sub-cross-

covariance matrices according to

Cx,z = (18)

L∑
u=1

wu


Et,v{(t− µt) · (h(t,v, g(µ

u
))− µz)T}

Et,ṫ,v{(ṫ− µṫ) · (h(t,v, g(µ
u
))− µz)T}

Et,v{(µu − µ
r) · (h(t,v, g(µ

u
))− µz)T}

Et,w,v{(w − µw) · (h(t,v, g(µ
u
))− µz)T}

 .

If each entry of the product is expanded, the remaining
unknown expectation values are given by

Et,v{t · h(·)T} = −2Ca
t · Su + µt

u
· Et,v{h(·)}T , (19)

Et,ṫ,v{ṫ · h(·)T} = −2Ca
ṫ,t · Su + µṫ

u
· Et,v{h(·)}T ,

Et,w,v{w · h(·)T} = −2Ca
w,t · Su + µw

u
· Et,v{h(·)}T ,

with

Su =
[
g

1,1
(µ
u
) . . . g

N,1
(µ
u
) . . . g

N,M
(µ
u
)
]
−

1T
N ·M ⊗ µtu .

The quantities µṫ
u
,Ca

ṫ,t
, µw
u

, and Ca
w,t are the entries of µa

and Ca from (10) with respect to the translation and angular
velocity, respectively.

F. Wrap-Up
In the following, a short wrap-up for the filter is provided:

1) Determine the sample points µ
u

with weights wu of
the density of the rotation f(r), where u = 1, . . . , L.

2) Calculate the conditional means µt
u

, µṫ
u

, and µw
u

,
the conditional covariance Ca

t , and conditional cross-
covariances Ca

ṫ,t
and Ca

w,t for all sample points (see
(10)).

3) Calculate the mean µf
u

and covariance Cf of the
random variable f

u
for all sample points (see (12)).

4) Calculate the expected values Et,v{h(·)} (see (13)),
Et,v{h(·) · h(·)T} (see (17)), Et,v{t · h(·)T}, Et,ṫ,v{ṫ ·
h(·)T}, and Et,w,v{w ·h(·)T} (see (19)) for all sample
points.

5) Combine the results of the expected values for deter-
mining the mean µz (see (14)), the covariance Cz (see
(15)), and the cross-covariance Cx,z (see (18)).

6) Square the measured ranges d̂ (see (7)).
7) Perform the filter step in order to calculate the esti-

mated mean and covariance (see (3)).

G. Computational Complexity
The determination of the sample points has the highest

computational cost for the calculating the required mean µz ,
covariance Cz , and cross-covariance Cx,z . For the proposed
approach, the sample points only have to be calculated for
the rotation. In this case, the computational complexity is in
O(R3), where R is the dimension of the rotation vector. If the
decomposition lies only in separation according to directly
and indirectly observed parts, which is explained in [3],
the computational complexity is in O

(
(R+D +N ·M)3

)
,

because the translation and the noise is in the nonlinearity,
which then has to be sampled, too.

IV. SIMULATION RESULTS

In the simulation, a two-dimensional coordinate system is
considered. Four emitters are located at the positions

−2 −2
−2 2
2 −2
2 2

m

with respect to the global coordinate system. Furthermore,
four sensors are placed on the target frame

−0.2 −0.2
−0.2 0.2
0.2 −0.2
0.2 0.2

m .

At different noise levels ranging from [0.000001, . . . , 0.3]
meters, 1000 random trajectories are generated, where the
sampling time was 0.1 seconds. The noise process is assumed
as isotropic. The measured ranges were generated with (1).

In the simulation, the proposed approach (SAL) is com-
pared to a standard estimator. As a standard estimator,
the Unscented Kalman Filter (UKF) was used, where the
decomposition lies in separation according to directly and
indirectly observed parts, which is explained in [3]. In this
case, the density for the translation and the rotation has to
be approximated with samples. Furthermore, due to the fact
that the measurement noise is mapped through the nonlinear
transformation, it has to be approximated with samples, too.
For the UKF, 71 sample points are used to approximate
the density of the translation, rotation, and the measurement
noise. On the other hand, the proposed approach only has
to approximate the rotation by sample points, where for
determining the sample points the approach presented in [6]
is used. Here, 5 sample points are used to approximate the
density for the rotation.

Furthermore, the system equation in (2) for a two-
dimensional coordinate system becomes linear and so the
prediction step can be solved by using the Kalman prediction
step. This is exploited for both estimators. The covariance of
the continuous process noise for the velocities (translation
and angle) is set to Qt

c = diag(
[
0.1 0.1

]
) and Qwc = 0.1,

respectively. The initial covariance for the translation is
Ct

0 = diag(
[
10 10

]
), for the translation velocity Cṫ

0 =
diag(

[
10 10

]
), for the angle Cr0 = 0.001, and for the

angular velocity Cω0 = 0.0001. The initial mean is initialized
with zeros.

In Fig. 2, the average and the standard deviation of the
Root Mean Square Error (RMSE) over 1000 trajectories
for each noise level are plotted. The performance of the
two estimators is nearly equal. Regarding the computational
effort, the proposed approach only has to determine sample
points for one dimension, which can be implemented very
efficiently. On the other hand, the UKF calculates a matrix
root for the covariance of the noise and the state (translation
and rotation), which has a high computational effort consid-
ering the size of the combined covariance matrix, which is
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(a) Simulation results for the RMSE of the translation.
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(b) Simulation results for the RMSE of the rotation.

Fig. 2. Simulation results for the two estimators SAL (Semi-Analytic Linearization) and UKF. The average and the standard deviation of the RMSE for
different noise level.

35 × 35. In the simulation, the proposed approach is three
times faster than the standard approach.

V. CONCLUSIONS

In this paper, a state estimator for range-based pose track-
ing is presented, which relies on an intelligent decomposition
of the proposed problem. This state estimator exploits the
Gaussian assumption and makes use of a modified mea-
surement equation, where the measurement noise process is
inside of the nonlinearity. Due to the modified measurement
equation, the filter step is separated into an analytically
integrable and an approximative part. In the approximative
part, the density for the rotation is represented by samples.
For every sample point, the required moments for the filter
step are then calculated by analytic moment calculation. In
doing so, the computational demand for the approximation
is drastically reduced compared to a standard decomposition,
which relies on conditionally linear substructures.

The new approach was evaluated in a two-dimensional
simulation and compared to the standard approach. Regard-
ing the RMSE, the performance of the two estimators is
similar. However, in the two-dimensional simulation exam-
ple, only a one-dimensional density of the rotation has to be
approximated for the proposed approach, which is feasible
for an embedded system, compared to the standard estimator,
where the matrix root of a large covariance matrix has to be
calculated. In summary, if the decomposition in integrable
substructure is exploited, the number of sample points can
be drastically reduced.
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