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Abstract— A new Bayesian filtering technique for estimating
signal parameters directly from discrete-time sequences is
introduced. The so called probabilistic instantaneous matching
algorithm recursively updates the probability density function
of the parameters for every received sample and, thus, pro-
vides a high update rate up to the sampling rate with high
accuracy. In order to do so, one of the signal sequences is
used as part of a time-variant nonlinear measurement equation.
Furthermore, the time-variant nature of the parameters is
explicitly considered via a system equation, which describes the
evolution of the parameters over time. An important feature
of the probabilistic instantaneous matching algorithm is that
it provides a probability density function over the parameter
space instead of a single point estimate. This probability density
function can be used in further processing steps, e.g. a range
based localization algorithm in the case of time-of-arrival
estimation.

I. INTRODUCTION

This article presents a new probabilistic approach for
estimating unknown time-variant signal parameters from a
set of discrete-time sequences. The proposed approach will
be exemplified for the special case of time delay estima-
tion, which arises in applications like target tracking or
localization. In that case, the desired parameter is the time
delay estimated based on the signal emitted by a source and
received by a sink, which is subsequently used by e.g. range
based localization approaches [1], [2].

Standard approaches for time delay estimation like block-
wise algorithms, e.g. the well known cross-correlation [3],
or recursive algorithms, e.g. adaptive filters, neglect un-
certainties inherent in the signals and do not explicitly
consider the time-variant nature of the signal parameters. An
adaptive filter is a recursive algorithm, that adjusts the filter
coefficients in such a way that the difference between the
measured and the filtered samples is minimized. This allows
consideration of slowly time-varying parameters. However,
the adaptation parameter has to be set in such a way that the
algorithm does not become unstable. For cross-correlation,
where information processing is performed in a block-wise
manner, the block length should maximize the signal-to-
noise ratio and minimize the peak smearing, which occurs
if the sink or the source is moving. Several more advanced
approaches based on cross-correlation have been introduced.
An example is region based cross-correlation [4], where the
template is split into different regions. In [5] an extended
matched filter is used for time delay estimation. To handle
overlapping echoes, a parallel bank of different matched
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filters are used, where the signal is modeled as a non-
stationary auto covariance function. A maximum-likelihood
estimator for time delay estimation is presented in [6].

Some modern approaches describe cross-correlation in a
probabilistic way. In [7] and [8] the so called Bayesian
correlation algorithm for object localization in images is
introduced. This Bayesian approach works in the feature
space and not in the signal domain as our approach. In
[9] a method for time delay estimation using Bayesian
regularization and nonnegative deconvolution is presented.

This paper introduces a Bayesian filtering technique for
estimating parameter, e.g. the time delay, directly from time
sequences that explicitly considers uncertainties and provides
a probability density function over the desired parameter
space. In addition, a model for the evolution of the desired
parameter over time and its associated uncertainty can be
used. A major novelty is the interpretation of a known refer-
ence sequence as part of a nonlinear measurement equation
of a nonlinear system.

The new so called probabilistic instantaneous matching
algorithm immediately processes every given signal sample
in a recursive fashion. In contrast, conventional methods, e.g.
cross-correlation, estimate the time delay from overlapping
or consecutive blocks of samples. Hence, the computational
complexity of the proposed new approach is much lower. In
addition, processing delay is significantly reduced.

The implementation of the probabilistic instantaneous
matching algorithm is based on an efficient representation
of the probability density functions by means of Gaussian
mixtures. In order to use Gaussian mixtures for representing
the likelihood function, one signal is part of a time-variant
measurement equation, where the values are linearly interpo-
lated between two samples. In order to limit the number of
mixture components, the prediction step is performed based
on an approximation of the underlying transition density by
means of an axis-aligned Gaussian mixture.

The structure of this paper is as follows. A problem
formulation for estimating the parameter between two time
signals is presented in Sec. II. Furthermore, the generic
Bayesian estimator is introduced. In Sec. III the measurement
model is derived. This measurement model is used in Sec. IV
to determine the probabilistic model. The filter algorithm is
divided into two parts. In Sec. V the measurement update
and in Sec. VI the time update is explained. The performance
of the new approach compared to the traditional solution is
evaluated in Sec. VII. Simulation and experimental results
are also shown. Conclusions and details on future investiga-
tions are given in Sec. VIII.
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Fig. 1. A source/sink-model.

II. PROBLEM FORMULATION

A discrete-time signal sd(t) can be described as a weigh-
ted Dirac mixture

sd(t) =
∑

k

ckδ(t − kT ) , (1)

where T is the sampling interval. If the signal is emitted by a
source, the output signal s(t) is a continuous-time signal. The
output signal is filtered with a partially unknown time-variant
system h(τ, t). In addition, the filtered signal is corrupted
with additive noise v(t). A sink receives this signal y(t),
which can be described as

y(t) =
∫ +∞

−∞
s(t − τ)h(τ, t)dτ + v(t) . (2)

The received signal y(t) is sampled, so that at each discrete
time step lT a single amplitude measurement y(lT ) is given.
From these sequentially received amplitude measurements
the parameters of the time-variant system h(τ, t) have to be
estimated. These parameters include for example the time
delay, which results from the distance between a microphone
and a loudspeaker. In Fig. 1 a source/sink-model is illus-
trated.

In order to estimate the time delay between two time
signals s(t) and y(t), a Bayesian filtering technique is used.
In general the Bayesian filtering algorithm consists of a mea-
surement and a system update. The measurement equation
as well as the system equation have to be identified. For
an amplitude measurement yl at time lT the measurement
update is given by

fe
l (τl) = cfL

l (yl|τl)f
p
l (τl) ,

where fe
l (τl) is the estimated density function, fL

l (yl|τl)
the likelihood function and c a normalization constant. The
predicted density function fp

l (τl) represents prior knowledge
about the estimated time delay. In the time update a new
predicted density is calculated according to

fp
l (τl+1) =

∫
R

fT (τl+1|τl) · fe
l (τl)dτl ,

where fe
l (τl) is the estimated density from the measurement

update and fT (τl+1|τl) is the transition density, which

depends on the system equation. The system equation that
describes the propagation of the parameters to the next time
step can be written as

τl+1 = a(τl) + wl , (3)

where a(.) is the nonlinear system equation and wl is the
additive process noise.

III. IDENTIFICATION OF THE MEASUREMENT EQUATION

The discrete-time signal given in (1), where ck is the
amplitude value at time step k and T is the sampling interval,
can be interpolated to get a continuous-time signal. The
sample values ck and ck+1 are linearly interpolated and so
the signal s(t) is given by

s(t)
=
∑
k

(
ck+1−ck

T t + (1 + k)ck − kck+1

)
rect

(
t
T − 1

2 − k
)
,

where

rect(t) =
{

1 |t| < 1
2

0 otherwise

is the rectangular function. By substituting

ak =
ck+1 − ck

T

and
bk = (1 + k)ck − kck+1 ,

the signal can be simplified to

s(t) =
∑

k

(akt + bk)rect
(

t

T
− 1

2
− k

)
.

The time-variant system h(τ, t), which describes the rela-
tionship between the input signal s(t) and the output signal
y(t) can be described as in (2). The function h(τ, t) includes
the time-variant sink position p(t), the time-variant source
position x(t) and the velocity of propagation c. Under the
assumption of no reflections, a simple model for h(τ, t) is

h(τ, t) = d(p(t), x(t), c)δ(τ − f(p(t), x(t), c)) , (4)

where f(.) is a nonlinear function which describes the time
delay depending on the distance between sink and source
position. The function d(.) is an attenuation term, which is
assumed to be constant. The simple model from (4) is used
in (2) resulting in

y(t) =
∫ +∞

−∞
s(t − τ)δ(τ − f(p(t), x(t), c))dτ + v(t) .

With the properties of the Dirac delta function it can be
simplified to

y(t) = s(t − f(p(t), x(t), c)) + v(t) .

The nonlinear function f(.) is substituted by the time delay
τ(t)

f(p
i
(t), x(t), c)) = τ(t)



and a measurement equation

y(t) =
∑

k

(ak(t−τ(t))+bk)rect
(

t − τ(t)
T

− 1
2
− k

)
+v(t)

for a certain sink given. For a causal system, a single
measurement at time lT is given as

y(lT )

=
l∑

k=0

(ak(lT − τ(lT )) + bk)rect
(

lT−τ(lT )
T − 1

2 − k
)

+v(lT ) .

If we assume, that the time delay is limited, only an interval
for τ ∈ [0, τmax] can be considered. The value for τmax

is converted to a discrete-time value D = round
(

τmax

T

)
.

The resulting measurement equation for a single amplitude
measurement is

y(lT )

=
l∑

k=l−D

(ak(lT − τ(lT )) + bk)rect
(

lT−τ(lT )
T − 1

2 − k
)

+v(lT ) .

For simplicity, the time index lT is put into subscript as (.)l,
so the measurement equation results in

yl =
l∑

k=l−D

(ak(lT −τl)+bk)rect
(

lT − τl

T
− 1

2
− k

)
+vl .

(5)

IV. DERIVATION OF A PROBABILISTIC MODEL

According to the measurement equation in (5), a gen-
erative model suffering from additive noise, a likelihood
function fL is given by

fL
l (yl|τl) =

fv

(
yl −

l∑
k=l−D

(ak(lT − τl) + bk)rect
(

lT−τl

T − 1
2 − k

))
.

We assume the density fv to be Gaussian, resulting in

fL
l (yl|τl) =

N

(
yl −

l∑
k=l−D

(ak(lT − τl) + bk)rect
(

lT−τl

T − 1
2 − k

)
, σv

)
.

This function is piecewise Gaussian, as the rectangular
functions do not overlap. Hence, the sum and the rectangular
functions can be pulled out, so that the likelihood function
can be simplified to

fL
l (yl|τl) =

l∑
k=l−D

1√
2πσv

exp
(
−0.5

(
τl−μk

σk

)2
)

rect
(

τl

T + 0.5 + k − l
)
,

(6)
with

μk =
−yl + aklT + bk

ak

and
σk =

σv

ak
.

For efficient implementation, the rectangular function can be
approximated with a Gaussian mixture according to

rect
(τl

T
+ 0.5 + k − l

)
=

M∑
j=1

wjN(τl − μj
k, σj) ,

with the weighting factors

wj =
T

M
,

expected values

μj
k = (l − k − 1)T + (j − 0.5)

T

M
and standard derivations

σj = σ
T

M
.

This approximation of the rectangular function is substituted
in (6). The resulting expression is a multiplication of Gaus-
sian mixtures
fL

l (yl|τl)

=
l∑

k=l−D

1√
2πσv

exp
(
−0.5

(
τl−μk

σk

)2
)

M∑
j=1

wjN(τl − μj
k, σj)

=
l∑

k=l−D

M∑
j=1

wk︸︷︷︸
σk
σv

N(τl − μk, σk)wjN(τl − μj
k, σj) .

The multiplication result can be combined to a Gaussian mix-
ture with M · (D + 1) components. The resulting likelihood
function is given by

fL
l (yl|τl) =

M ·D∑
u=0

wg
uN(τl − μg

u, σg
u) ,

where the components are calculated by the following ex-
pressions

μg
u =

μkσj2 + μj
kσk

2

σj2 + σk
2

, (7)

σg
u =

√
σj2

σk
2

σj2 + σk
2

(8)

and

wg
u =

wkwj√
2π(σj2 + σk

2)
exp

(
−1

2
(μk − μj

k)2

σj2 + σk
2

)
, (9)

with k = l − D, . . . , l and j = 1, . . . , M .

V. MEASUREMENT UPDATE

In the measurement update, the estimated density fe
l (τl)

will be calculated according to Bayes’ law

fe
l (τl) = cfL

l (yl|τl)f
p
l (τl) .

As stated above, the likelihood function consists of M ·(D+
1) Gaussian mixture components and the predicted density
fp

l (τl) is a Gaussian mixture with N components, so the
estimated density fe

l (τl) has N · (M · (D + 1)) Gaussian
mixture components. For calculating the components of the
estimated density μi, σi, wi with i = 1, . . . , N ·(M ·(D+1))
(7), (8) and (9) can be used. To obtain a valid density the
estimated density has to be normalized.



VI. TIME UPDATE

In analogy to the measurement equation, a system equa-
tion, which is given in (3), has to be identified. In this
paper we consider a simple linear model with additive time
invariant process noise wl according to

τl+1 = τl + wl .

Thus the uncertainty of the parameter is increased over time.
According to the given system equation the transition density
is given by

fT (τl+1|τl) =
∫
R

δ(τl+1 − τl)fw(w)dw = fw(τl+1 − τl) .

The process noise fw is assumed to be Gaussian and
the transition density is approximated with an axis-aligned
Gaussian mixture with N components

fT (τl+1|τl) =
N∑

i=1

wiN(τl+1 − μi, σi)N(τl − μi, σi) .

In order to use a more realistic process noise model, the
density can be approximated with a Gaussian mixture. In this
case the number of the components of the resulting transition
density is increasing depending on the approximation of the
process noise. If a nonlinear transition density model is used,
it can be approximated with an algorithm, which is described
in [10]. By using this transition density the predicted density

fp
l (τl+1) =

∫
R

N∑
i=1

wiN(τl+1−μi, σi)N(τl−μi, σi)fe
l (τl)dτl

can be written as

fp
l (τl+1)

=
N∑

i=1

N(τl+1 − μi, σi) wi

∫
R

N(τl − μi, σi)fe
l (τl)dτl︸ ︷︷ ︸

wp
i

.

That means, that only the weighting factors of the compo-
nents for τl+1 have to be updated. The resulting predicted
density has N components.

VII. RESULTS

The performance of the new approach is evaluated in sim-
ulation as well as in experiments with real data. Furthermore,
the new algorithm will be compared with the conventional
method, the classic cross-correlation.

A. Simulation Results

The performance of the new approach is evaluated by
simulations in a two-dimensional coordinate system. In the
simulation setup a moving source is modeled. The motion of
the source is implemented with a piecewise constant velocity.
The source signal is delayed depending on the time-variant
distance between sink and source. The signals are generated
with zero-mean white Gaussian noise with unit variance.
In addition, the signals are disturbed by adding zero-mean
white Gaussian noise with different variances. Equation (2)

is used to generate the received samples, where the time-
variant system is given by

h(τ, t) = sinc(τ − f(p(t), x(t), c))

and the nonlinear function f(.) is given by

f(p(t), x(t), c) =

∣∣p(t) − x(t)
∣∣
2

c
.

The sampling frequency is set to ft = 4800 Hz. For the new
approach, the parameters for the likelihood function and for
the transition density were selected as follows.

For the likelihood function the maximum time delay is
τmax = 0.0035 seconds. The measurement noise is set
to σv = 1. Each rectangular function is approximated by
M = 10 components and the variance is set to σ = 0.7.
Each variance of the likelihood function depends on the
time-variant amplitude values. The variance decreases if the
distance between the amplitude values increases. Obviously,
the variance depends on the frequency spectrum of the signal.
The approximation of the rectangular function is sufficient.
However, each approximated rectangular function overlap,
which results in an error for the likelihood function.

The transition density is approximated by N = 60 compo-
nents. The expected values are linearly equally spaced points
between μtr = [0, . . . , 0.0035] seconds. The variance of the
transition density is set to σtr = 1.52 · 10−5 . The variance
of the transition density has to be adjusted with respect to
the sampling frequency, because in the time update only the
weighting factors of the predicted density are updated.

For cross-correlation the block length is set to 50 samples.
The cross-correlation is calculated for every sample, which
means that the block is shifted when a sample is received.
Based on the results of cross-correlation the maximum value
is then selected.

In the simulations the variance of the noise term is 0, 0.5
and 1, respectively. The results are shown in Fig. 2(a-b),
where the new approach (blue line), cross-correlation (red
line) and the true time delay (black line) are illustrated.
The new approach has a transition time of 14 samples,
where cross-correlation provides a result after 50 samples.
Furthermore, cross-correlation produces outliers, when the
noise increases. The new approach does not produce outliers,
because previous information represented in the predicted
density is used for estimation. The squared error between the
true time delay and the estimates is illustrated in Fig. 2(d-f).
The squared error of the estimates from the new approach is
smaller than from cross-correlation. Even if the noise level
is very high the squared error of the estimates from the new
approach is lower than 10−8.

B. Experimental Results

In the real experimental setup, a source moves for three
seconds towards the sink and back to the starting point. The
maximum distance deviation is measured by hand as 0.34
meters. The velocity of sound is assumed to 343 m/s, thus
the distance deviation is around τdeviation = 0.99125 · 10−3

seconds. In Fig. 3 the results are shown. The sampling
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(a) Comparison of the new algorithm and the con-
ventional method in the simulation with a noise
level σv = 0.
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(b) Comparison of the new algorithm and the con-
ventional method in the simulation with a noise
level σv = 0.5.
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(c) Comparison of the new algorithm and the con-
ventional method in the simulation with a noise
level σv = 1.
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(d) Squared error by noise level σv = 0.
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(e) Squared error by noise level σv = 0.5.
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(f) Squared error by noise level σv = 1.

Fig. 2. Simulation result for a moving source. The classic cross-correlation is compared with new probabilistic approach.

frequency is 48000 Hz. The parameters for the new approach
are as follows.

The maximum time delay of the likelihood function is
τmax = 0.0035 seconds. The measurement noise is set to
σv = 0.5. Each rectangular function is approximated by
M = 10 components and the variance is set to σ = 0.7.

The transition density is approximated by N = 200
components. The expected values are linearly equally spaced
points between μtr = [0.0015, . . . , 0.0035] seconds. The
variance of the transition density is set to σtr = 2.12 · 10−6.

The block length for cross-correlation is set to 5000.
The new approach provides results with high accuracy.
The estimates of the cross-correlation behave like a stair
function. The small steps arise from the discretization of the
time delay, because only the maximum value of the cross-
correlation is considered. The height of those steps depend
on the sampling frequency.

To reduce the complexity of the new approach the signals
can be downsampled first. In the next experiment the two
time signals are downsampled with a factor of 10, thus the

sampling frequency is 4800 Hz. If the data is downsampled,
the parameter for the transition density has to be adjusted.
The transition density can be approximated with a lower
number of Gaussians. The transition density is approximated
with N = 96 components. The expected values are linearly
equally spaced points between μtr = [0.0015, . . . , 0.0035]
seconds and the variance of the transition density is set to
σtr = 5.2 · 10−6.

The block length for cross-correlation is set to 500. The
results are shown in Fig. 4. The accuracy is lower for
the estimates of the new approach. However, the steps
behavior of the estimates of the cross-correlation increases,
too, because the sampling frequency is reduced.

VIII. CONCLUSIONS AND FUTURE WORK

A new Bayesian nonlinear filtering technique for esti-
mating unknown parameters from time sequences has been
presented and exemplified for time delay estimation. The new
approach provides probability density functions describing
the parameter estimates that are updated based on every
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Fig. 3. Experimental result for a moving source. Comparing classic and
new approach. The sampling frequency is set to ft = 48000 Hz.
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Fig. 4. Experimental result for a moving source. Comparing classic and
new approach. The sampling frequency is set to ft = 4800 Hz.

received measurement sample. For that purpose, uncertainties
in the measurements are explicitly considered. Furthermore,
a system model for the time-varying parameters is included.

The complexity of the algorithm is limited, because in
the time update the transition density is approximated with
an axis-aligned Gaussian mixture. However, the numerical
complexity of the new approach is very high, if the sampling
frequency increases. Hence, the involved signals are typically
downsampled. This results in a decreased accuracy, that is
nevertheless still better than the accuracy obtained with the
conventional approaches.

Future work is concerned with using the probability den-
sity function in a time-of-arrival based localization algorithm,
which takes the probabilistic description into account, so that
the uncertainties are consequently considered. In addition, a
more realistic model as in (4) will be taken into account,
where the attenuation term and reflections are considered. If
multipath propagation is not considered in the measurement
equation, the measurement noise depends on the emitted sig-
nal, which has to be considered in future work. Furthermore,
a real-time implementation of the algorithm for an acoustic
tracking system is currently under development.
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