


























Fig. 9. Cylinder tracking simulation results. (a) Cylinder position error. (b) Cylinder orientation error. (c) Cylinder volume error.

(d) Measurement update runtime.

Finally, an open source implementation of the S2KF

including both the new point-symmetric Gaussian sam-

pling and the asymmetric Gaussian sampling is available

in the Nonlinear Estimation Toolbox [30].

APPENDIX

A. Odd Moments of a Point-Symmetric Dirac Mixture

The odd moments of an arbitrary density function

f(x) with x 2RN are defined as

Ef

24 NY
j=1

x
nj
j

35= Z
RN

NY
j=1

x
nj
j ¢f(x)dx,

where

NX
j=1

nj = 2k+1, 0· nj · 2k+1, k 2 N:

For a standard normal distribution, i.e., f(x) =

N (x;0,IN), all odd moments equals zero. Hence, we
have to show that this also holds for a point-symmetric

Dirac mixture density function comprising 2L samples.

By replacing the density f(x) with a point-symmetric

Dirac mixture approximation we obtain

E±

24 NY
j=1

x
nj
j

35= Z
RN

NY
j=1

x
nj
j

1

2L

LX
i=1

±(x¡ xi) + ±(x+ xi)dx

=
1

2L

LX
i=1

0@ NY
j=1

x
nj
i,j +

NY
j=1

(¡xi,j)nj
1A

=
1

2L

LX
i=1

0@ NY
j=1

x
nj
i,j ¡

NY
j=1

x
nj
i,j

1A= 0:
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The same result can be easily obtained for the case of

an odd number of samples 2L+1 where the additional

sample is placed at the state space origin.

B. Proof of Distance De(S)

By using the facts that the distance De(S) is com-

posed of sums of products of unormalized Gaussians

and their product is also an unnormalized Gaussian as

well as the integral over a Gaussian equals always one,

the three terms of the distance De(S) are obtained ac-

cording to

De1 =

Z bmax

0

1

¼N=2bN¡1

Z
RN

μ
b2

1+b2

¶N
¢ (2¼)N(1+ b2)NN (m;0,(1+b2)IN)2dmdb

=

Z bmax

0

1

¼N=2bN¡1

μ
b2

1+b2

¶N
¼
N
2 (1+ b2)N=2db

=

Z bmax

0

b

μ
b2

1+ b2

¶N=2
db,

De2(S) =

Z bmax

0

1

¼N=2bN¡1

Z
RN

μ
b2

1+ b2

¶N=2
¢ (2¼)N=2(1+ b2)N=2

¢ N (m;0,(1+ b2)IN)
(2¼)N=2bN

2L

¢
LX
i=1

N (m;s i,b2IN)+N (m;¡s i,b2IN)dmdb

=

Z bmax

0

2N¼N=2bN+1

2L

1

(2¼)N=2(1+2b2)N=2

¢
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i=1

exp

μ
¡1
2

ks ik22
(1+2b2)

¶
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2
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¶
db
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0
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μ
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and

De3(S) =

Z bmax

0

1
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C. Proof of Theorem III.1

Like in [22], to compute the term De3(S) we use that

for z > 0Z bmax

0

2

b
exp

μ
¡1
2

z

2b2

¶
db =¡Ei(¡1

2

z

2b2max
), (18)

where Ei(x) is the exponential integral defined as

Ei(x) :=

Z x

¡1

et

t
dt:

Moreover, the product rule gives

b2max
2
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μ
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2

z
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¶
=

Z bmax

0
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2

z

2b2

¶
db

+
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4
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0

1

b
exp

μ
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2
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db,

and together with (18) we obtainZ bmax

0

bexp

μ
¡1
2

z

2b2

¶
db =

b2max
2
exp

μ
¡1
2

z

2b2max

¶

+
z

8
Ei(¡1

2

z

2b2max
): (19)

Note that, although Ei(x) is not defined for x= 0, the

integral in (19) still converges for z = 0 and is equal to

b2max=2. Hence, we introduce the function

Ei0(x) :=

½
0, if x= 0

Ei(x), elsewhere
(20)
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to also cover the case z = 0. By replacing Ei(x) in (19)

with Ei0(x), we get the closed-form expression

De3(S) =
2

(2L)2

LX
i=1

LX
j=1

b2max
2

Ã
exp

Ã
¡1
2

ks i¡ sjk22
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8
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!!
:

D. Proof of Distance Do(S)

The distance Do(S) differs from its even counter-

part due to the additional sample placed fixed at the

state space origin. This does not effect Do1, and hence,

it equals De1. The other two terms are sums of their

reweighted even counterparts (due to the changed sam-

ple weight) and terms comprising also products of un-

normalized Gaussians. Hence, they are given as

Do2(S)

=
2L
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E. Proof of Theorem III.2

A closed-form expression for Do3(S) can directly be

obtained by using again (19) and (20) as well as the

closed-form expression for De3(S) resulting in

Do3(S) =
(2L)2

(2L+1)2
De3(S)+

b2max
2(2L+1)2

+
4
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+
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μ
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2

ks ik22
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¶
:

F. Boundedness of De(S) and Do(S)

We show the boundedness of the distances De(S)

and Do(S) for an increasing dimension N. For a given

bmax it holds

lim
N!1

De1 = lim
N!1
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and

lim
N!1

De3(S) = lim
N!1

Z bmax

0

2b

(2L)2

¢
LX
i=1

LX
j=1

exp

Ã
¡1
2

ks i¡ sjk22
2b2

!

+exp
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2
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2b2
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·2L2

db
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Z bmax

0

bdb =
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2
:

Hence, the distance De(S) is bounded by bmax accord-

ing to

lim
N!1

De(S) = lim
N!1

De1¡ 2De2(S)+De3(S)·
b2max
2
:

In a similar manner, the same result can be obtained for

the distance Do(S).

G. Invariance under Rotation/Reflection

We want to proof that the distance measures De(S)

and Do(S) are invariant under rotation/reflection. Let

R 2 RN£N be an orthogonal matrix and a,b 2RN . Then,
it holds

kRak22 = kak22
kRa§Rbk22 = ka§ bk22:

Hence, given two point-symmetric Dirac mixtures pa-

rameterized by the sets

A= fs1, : : : ,sLg
and

B = fRs1, : : : ,RsLg,
we directly see that De(A) =De(B) and Do(A) =Do(B).

H. Proof of Theorem III.3

With the aid of (18), the termsZ bmax

0

1

b
(s(d)i § s(d)j )exp
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ks i§ sjk22
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!
db (21)

of (15) can be computed according to
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Ã
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2

ks i§ sjk22
2b2max

!
: (22)

For the special case of ks i§ sjk22 = 0 also s(d)i § s(d)j
equals zero. Consequently, the integral (21) converges

to zero as well. Like in the closed-form expression

for De3(S), we can replace Ei(x) in (22) with (20) to

handle such cases and obtain a closed-form expression

for @De3(S)=@s
(d)
i according to

@De3(S)

@s(d)i
=

1

(2L)2

LX
j=1

(s
(d)
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Ã
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2

ks i¡ sjk22
2b2max

!

+(s(d)i + s(d)j )Ei0

Ã
¡1
2

ks i+ sjk22
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!
:

I. Proof of Theorem III.4

A closed-form expression for @Do3(S)=@s
(d)
i can anal-

ogously be obtained by exploiting (18) and (22) as well

as the closed-form expression for @De3(S)=@s
(d)
i result-

ing in

@Do3(S)

@s(d)i
=

(2L)2

(2L+1)2
@De3(S)

@s(d)i

+
s(d)i

(2L+1)2
Ei0

μ
¡1
2

ks ik22
2b2max

¶
:

J. Sample Covariance Matrix Correction

Given a point-symmetric Dirac mixture parameter-

ized by fzigLi=1. Our goal is to find a matrix T to trans-
form these parameters according to

s i = T ¢ zi, 8i 2 f1, : : : ,Lg,
such that the sample covariance matrix of the point-

symmetric Dirac mixture given by fs igLi=1 equals the
identity, i.e.,

Cs =
2

M

LX
i=1

s i ¢ sTi = IN ,

whereM = 2L+1 orM = 2L, depending on whether an

additional sample is placed at the origin or not. Hence,

we set

Cs =
2

M

LX
i=1

(Tzi) ¢ (Tzi)T = TCzTT
!
=IN:

With the matrix decomposition Cz =AAT, we see that

IN = (TA)(TA)
T can be satisfied with T=A¡1. A can be

computed, for example, with the eigendecomposition or

Cholesky decomposition of Cz .
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