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Abstract—With the advent of cheap sensor technology, multi-
sensor data fusion algorithms have been becoming a key enabler
for efficient in-network processing of sensor data. The informa-
tion filter, in particular, has proven useful due to its simple
additive structure of the measurement update equations. In order
to exploit this structure for an efficient in-network processing,
each node in the network is supposed to locally process and
combine data from its neighboring nodes. The aspired in-network
processing, at first glance, prohibits efficient privacy-preserving
communication protocols, and encryption schemes that allow for
algebraic manipulations are often computationally too expensive.
Partially homomorphic encryption schemes constitute far more
practical solutions but are restricted to a single algebraic opera-
tion on the corresponding ciphertexts. In this paper, an additive-
homomorphic encryption scheme is used to derive a privacy-
preserving implementation of the information filter where addi-
tive operations are sufficient to distribute the workload among
the sensor nodes. However, the encryption scheme requires the
floating-point data to be quantized, which impairs the estimation
quality. The proposed filter and the implications of the necessary
quantization are analyzed in a simulated multisensor tracking
scenario.

I. INTRODUCTION

The acquisition and processing of sensor data is increasingly
being implemented in networked systems [1], [2]. To leverage
the potential of local processing power and storage capacity,
distributed state estimation algorithms are the method of choice.
With the advent of Kalman filter theory [3], fusion of estimates
provided by independently operating agents has become a
central topic of research in multisensor state estimation [4]–[9].
The in-network processing and fusion of sensor data relies
on a thorough treatment of the estimation error statistics [10],
[11], which are given by error covariance matrices. A key
challenge in fusion pertains to the reconstruction of cross-
covariance information that characterizes dependencies among
the agents’ local estimates. Optimal fusion [12], [13] exploits
the cross-covariance structure to minimize the estimation error
but requires precise knowledge about the very same. Although
possibilities to keep track of cross-covariance information have
been identified [14] or specific distributed implementations [15],
[16] can be used to circumvent the need for reconstruc-
tion, these approaches typically increase complexity of local
processing and limit flexibility and robustness. Alternatively,
suboptimal strategies can be pursued that employ conservative
bounds on the cross-covariance matrices. For this purpose, a

wide variety of conservative data fusion methods [17]–[24] can
be named.

A key concept for the processing of multisensor data is the
information form [25] of the Kalman filter, which essentially
represents an algebraic reformulation of the Kalman filtering
equations—the approaches listed above are, in most cases,
derived in information form or can be reformulated accordingly.
The information filter offers the advantage that updating
estimates with sensor observations can be expressed in terms of
simple summations. In sensor networks, the information form is
particularly useful to preprocess and compress sensor data along
multi-hop communication paths. Hierarchical networks benefit
from the additive structure, which allows for removing common
information between estimates to be fused—the channel filter
keeps track of common information and simply subtracts
it from the fusion result [8], [26]. Also, fully distributed
implementations [27] of the Kalman filter are related to the
information form.

The information filter as a key tool to leverage efficient
multisensor state estimation heavily relies on the possibility to
algebraically manipulate sensor data when nodes exchange data
with each other. An important implication is that the transmitted
data and the intermediate processing results are disclosed to
the receiving nodes in the network. Also, eavesdropping on
the nodes’ transmissions reveals possibly sensitive data to an
adversary. So far, encryption has hardly been considered in
the context of multisensor data fusion. A main reason can be
seen in the structure of most popular encryption schemes, like
AES [28], that prohibit algebraic operations on ciphertexts.
With these schemes, encryption of sensor data deprives the
information filter of its advantages. However, homomorphic
encryption schemes [29]–[32] preserve the possibility of
algebraic manipulations. These schemes are considered to
be computationally infeasible unless we restrict ourselves
to partially homomorphic systems that allow for either the
addition or the multiplication of encrypted data without prior
decryption. In this paper, we exploit the additive Paillier
encryption scheme [30] to implement an encrypted information
filter that enables us to protect sensor data from adversaries and
to process the data within the network efficiently. We study the
implications of the quantization of floating-point data required
for the encryption and evaluate the proposed privacy-preserving
information filter (PPIF) in a simulation.



II. RELATED WORK

In recent years, encrypted signal processing has experienced
a surge of interest. An overview of various applications of
homomorphic encryption in signal processing is provided in
[33], [34]. Also, a privacy-preserving implementation [35] of
a Kalman filter has been studied that requires an interactive
protocol between the sensor and the system operating the
Kalman filter. A difficulty is, in particular, the inversion of
the innovation matrix. An encrypted implementation of a
model-predictive controller for constrained linear systems has
been discussed in [36]. For statistical analyses of data, the
additive Paillier scheme is utilized in [37]. First studies on
using fully homomorphic schemes for least-squares regression
have been conducted in [38], [39]. Yet, these scheme are
perceived as rather impractical, and tailor-made solutions
are required. Applications of such encryption schemes are
particularly appealing in the context of cloud computing [40]
and sensor networks [41]. In particular for the latter application
scenario, the proposed privacy-preserving information filter
proves useful as discussed in the following.

III. KALMAN AND INFORMATION FILTERING

The Kalman filter [3], [42] is a well-established inference
scheme to estimate the state xk ∈ Rn of a dynamic linear
system

xk+1 = Ak xk +Bk ûk +wk , (1)

where k ∈ N denotes the discrete time. The process dynamics
are characterized by the system matrix Ak ∈ Rn×n, and
a possible input ûk ∈ Rl may affect the state through the
control-input matrix Bk ∈ Rn×l. Uncertainties affecting the
state transition are modeled by the zero-mean white noise wk ∼
N (0,Cw

k ) with covariance matrix Cw
k ∈ Rn×n. Observations

of the state are provided by a network of N ∈ N sensor nodes.
An estimate x̂ek is computed with the aid of the measurements
ẑjk ∈ Rm, where j ∈ {1, . . . , N} is the index of the sensor
node providing the measurement. The corresponding model

ẑk = Hj
k xk + vjk

is assumed to be linear with observation matrix Hj
k ∈ Rm×n

and noise vjk ∼ N (0,Cz,j
k ) with covariance Cz,j

k ∈ Rm×m.
The measurement noise terms are assumed to be mutually
uncorrelated and to be uncorrelated with the process noise.

The Kalman filter is initialized with a prior estimate x̂e0
and prior covariance matrix Ce

0 and consists of prediction and
filtering steps. In the former step, the process model (1) is
used to compute a predicted estimate

x̂pk+1 = Ak x̂
e
k +Bk ûk (2)

with error covariance matrix

Cp
k+1 = AkC

e
kA

T
k +Cw

k . (3)

The filtering step is used to incorporate a measurement ẑjk at
time step k. The update of the prior or predicted estimate x̂pk
is given by

x̂ek = (I−KkH
j
k) x̂

p
k +Kk ẑ

j
k (4)

with covariance matrix

Ce
k = (I−KkH

j
k)C

p
k(I−KkH

j
k)

T +KkC
z,j
k KT

k (5)

and Kalman gain

Kk = Cp
k(H

j
k)

T
(
Hj
kC

p
k(H

j
k)

T +Cz,j
k

)−1
. (6)

In order to process multiple estimates, as it is required in
the considered multisensor setup, the Kalman filter formu-
las (4), (5), and (6) have to be applied successively to each
measurement. Alternatively, the measurements can be stacked
into a vector to perform a blockwise update. However, both
sequential and blockwise filtering do not serve well a distributed
processing of measurements.

The information filter [25] is an algebraic reformulation of
the Kalman filter. In the information form, the filtering step,
i.e. equations (4) and (5), can be written as

(Ce
k)

−1 x̂ek = (Cp
k)

−1 x̂pk +

N∑
j=1

ijk , (7)

(Ce
k)

−1 = (Cp
k)

−1 +

N∑
j=1

Ijk , (8)

where ijk and Ijk are the information vectors and matrices,
respectively, provided by the sensor nodes. They are locally
computed by

ijk = (Hj
k)

T
(
Cz,j
k

)−1
ẑjk , (9)

Ijk = (Hj
k)

T
(
Cz,j
k

)−1
Hj
k . (10)

The update equations (7) and (8) offer the advantage that
the sum of information parameters can be computed in a
distributed fashion—each node can compute parts of the
sum by combining the received information parameters. The
combination with x̂pk and Cp

k and the prediction step (2)
and (3) is then performed in the data sink. In the following
sections, a privacy-preserving formulation of the information
filter update (7) and (8) is derived and studied.

IV. CRYPTOGRAPHY FUNDAMENTALS

A. Provable Security

Modern cryptography is the “study of mathematical tech-
niques for securing digital information, systems, and distributed
computations against adversarial attacks” [43]. While cryptogra-
phy has traditionally been associated with encryption, it covers
a much broader spectrum of topics, including hash functions,
message authentication, digital signatures, digital commitment
schemes, zero-knowledge proofs, oblivious transfer, secure
multiparty computation, etc. As a science, modern cryptography
aims to provide rigorous proofs that certain cryptographic
primitives and protocols fulfill specific security definitions
under precisely formulated assumptions.

A specific security definition consists of a quantifiable
security goal and a formal threat model. In case of encryption,
a common security goal is the indistinguishably (IND) of
ciphertexts, meaning that an adversary cannot distinguish



encryptions of equal-length plaintext messages from each
other. The intuition behind this is that if all ciphertexts appear
indistinguishable, no attacker can learn anything about their
contents. The threat model, in turn, specifies how powerful
the attacker is, in particular whether its running time is
bounded by a probabilistic polynomial time (PPT) or is
computationally unbounded. The former assumption lets us
prove “computational security”, while the latter leads to
“information-theoretic security” or “perfect secrecy” (although,
in practice, the latter is often prohibitively expensive).

The threat model also specifies the attacker’s capabilities, e.g.
whether it can only eavesdrop on encrypted communication
(EAV), encrypt arbitrary plaintexts (“chosen-plaintext attack”,
CPA), or decrypt arbitrary ciphertexts in preparation for or
even during the attack (“chosen-ciphertext attack”, or CCA1,
and “adaptive CCA”, or CCA2, respectively) [44]. A common
encryption security definition is IND-CPA: no PPT-bounded
attacker may be able to distinguish encrypted messages, even
if given the option to encrypt arbitrary messages under the
same key. This definition is also known as “semantic security”.
More generally in secure multiparty computations, adversaries
are classified as passive (also referred as “semi-honest”) or
active (“malicious”), based on whether corrupted parties still
adhere to the protocol or deviate from it arbitrarily [45].

The actual proof of security of a given encryption scheme
usually entails reducing it to the assumed (if not proven)
hardness of certain problems. For example, the popular RSA
(Rivest-Shamir-Adleman) encryption relies on the assumption
that prime factorization is NP-hard, and proving its security
requires showing that any efficient attacker who breaks RSA
would also be able to factorize large composite numbers in PPT.
RSA is therefore considered secure until the aforementioned
assumption is proven incorrect.

B. Private-key and Public-key Encryption

Two paradigms are currently dominant in the field of crypto-
graphic encryption. A private-key (also known as secret-key or
“symmetric”) encryption scheme uses the same encryption key
(usually a random bit string of length λ) for both encrypting
and decrypting messages, and consists of three algorithms:

sk ← KeyGen(1λ)

c← Encsk(m)

m← Decsk(c)

Meanwhile, public-key (“asymmetric”) encryption uses two
keys: the public key pk is freely distributed and can be used
only to encrypt messages, while the secret key sk is kept
private and used to decrypt ciphertexts encrypted under its
corresponding public key:

pk, sk ← KeyGen(1λ)

c← Encpk(m)

m← Decsk(c)

Private-key encryption algorithms generally have the advan-
tage of being faster and having smaller key and ciphertext

sizes. Public-key encryption, on the other hand, simplifies key
management, as public keys can be distributed over insecure
channels (although some infrastructure is normally needed
to ensure their authenticity), and n-way communication only
requires O(n) key pairs instead of O(n2) symmetric keys.

Popular private-key encryption schemes include the Ad-
vanced Encryption Standard (AES) [28], Serpent [46], and
Twofish [47]. Some popular public-key encryption schemes
include RSAEP-OAEP [48], ElGamal [29], Cramer-Shoup [49],
and Paillier [30] cryptosystems.

C. Homomorphic Encryption

The core idea of homomorphic encryption (HE) is to combine
two messages encrypted under the same key in such a way
that produces a new valid ciphertext containing a meaningful
combination of the old ones’ contents, without exposing any
information about them. For example, an encryption scheme
with the additive homomorphic property allows us, without the
need for a decryption key, to combine the encryptions of two
numbers into a valid encryption of the sum of those numbers:

Encpk(m1)� Encpk(m1) = Encpk(m1 +m2)

Both symmetric and asymmetric encryption schemes can
have homomorphic properties, although most well-studied
homomorphic encryptions are public-key. Two popular asym-
metric schemes, by Taher ElGamal [29] and by Pascal Paillier
[30], allow multiplicative and additive homomorphic operations
on ciphertexts, respectively. These schemes are referred to
as “partially homomorphic encryption” (PHE), as only one
homomorphic algebraic operation is possible under them.

In contrast, “fully homomorphic encryption” (FHE) schemes
allow for both addition and multiplication. The first such
scheme to be proven secure was proposed by Craig Gentry
in 2009 [50], but its computational complexity made it highly
impractical for real applications. Although a number of more
efficient fully-homomorphic schemes have been proposed since
(see the survey in [51]), even the newest ones are still infeasible
for large-scale data processing [38].

Having homomorphic properties has no adverse effect on the
semantic security of a given scheme [31]. However, the inherent
malleability of ciphertexts means that no homomorphic encryp-
tion can be secure against adaptive chosen-ciphertext attacks
(IND-CCA2), which is the strongest commonly-considered
encryption security guarantee [44].

D. Paillier Cryptosystem

The Paillier encryption scheme was proposed by Pascal
Paillier in 1999 [30]. It is proven semantically secure under the
decisional composite residuosity assumption, and has several
useful homomorphic properties that make it attractive for secure
signal processing [35]. Specifically, it allows for homomorphic
addition of encrypted values and, consequently, multiplication
of a ciphertext by a plaintext integer value:

∀m ∈ Zn : Encpk(m) ∈ Zn2

Encpk(m1) · Encpk(m2) =Encpk(m1 +m2)

(Encpk(m1))
m2 =Encpk(m1 ·m2)



where Zn represents integers modulo n, a product of two
large primes that is part of the public key. All homomorphic
computations on plaintexts under Paillier scheme are thus
carried out in the finite ring Zn.

V. PRIVACY-PRESERVING INFORMATION FILTER

In this section we describe our proposal for a protocol we
refer to as “privacy-preserving information filter” (or “PPIF”
for short). We attempt to identify and to leverage potential
synergies between the various tools and methods employed in
the fields of sensor fusion and state estimation and of modern
cryptography. The starting point of and the intuition behind
PPIF is the question: How can we use the additive homomophic
properties of our chosen encryption scheme (specifically, the
Paillier cryptosystem) to implement secure multisensor fusion
in a somewhat realistic scenario?

A. Scenario

Consider the following setup: A mobile agent traverses
unknown terrain and must rely on measurements by multiple
externally-operated sensors for its localization. For the sake
of simplicity and without loss of generality, we assume that
the agent has no internal sensors of its own. The agent and
the individual sensors can communicate with each other over
insecure channels, but neither the agent, nor the sensor grid
operator can fully trust that the other has not been corrupted
by a third party attacker. Here, like in most research on
secure signal processing [33], we assume a static PPT-bounded
semi-honest (passive) adversary.

The agent now defines the following (informal) security
goals:
A1: No adversary eavesdropping on the agent’s communication

with the sensors may gain any meaningful information
about its location.

A2: No adversary corrupting one or more sensors may gain any
more meaningful information than it would just from these
corrupted sensors. In particular, a corrupted sensor should
be unable to learn anything from its honest neighbors.

The sensor grid operator defines its security goal as:
S1: No adversary eavesdropping on the communication or

compromising the agent’s system may gain any meaning-
ful information about the locations and the measurement
models of any individual sensor.

Clearly, an encryption of some kind is required to securely
transmit the sensors’ measurement data to the agent over
insecure communication channels. In the following, we assume
that the agent possesses a public/private key pair, and that its
public key has been distributed to every sensor ahead of time.

B. Prediction Step

While the agent has no internal sensors, it is reasonable to
assume that it at least knows its own system model. Because
all information needed for this step is available to the agent
locally in plaintext, this computation can occur unencrypted.
The prediction step is conducted by means of the Kalman

filter equations (2) and (3) for the estimate and the covariance
matrix, respectively.

In the simplest case, the system vector x̂k consists only
of the agent’s current global coordinates, so for all k, Ak is
the identity, the control matrix Bk is null, and its movement
speed is mapped in the process noise Cw

k . With this, the entire
prediction step is reduced to a single matrix addition:

Cp
k+1 = Ce

k +Cw
k .

C. Filter Step
To attain the security goal S1, the sensors in PPIF do not

communicate with the agent individually, but instead, aggregate
their (encrypted) data locally and transmit the total sum of their
observations to the agent at once. This aggregation is made
possible by the homomorphic properties of the encryption. We
propose that the sensors be arranged in a tree-like hierarchy,
with each one encrypting its measurement of the agent’s
location, and sending it “upstream” to its respective hub,
until finally the central hub of the grid sends the aggregated
measurements to the agent. What is being encrypted and
transmitted here, however, are not the raw measurements
ẑjk (where j is the sensor’s identifier in the grid), but their
information form ijk, as well as their respective covariances Ijk,
also in information form. They are given by (9) and (10).

Recall that in the information filter, the filtering step consists
simply of summing up all information vectors, then multiplying
them by the inverse of the sum of all information matrices to
obtain the estimate. Because it does not matter where exactly
this summation occurs, the additive homomorphic property of
the encryption scheme allows each sensor hub to pre-aggregate
the encrypted information vectors and matrices it receives
before sending them “upstream”. Crucially, the hub gains no
knowledge of the actual measurement data, and the message it
sends is computationally indistinguishable from any it received.

The agent ultimately receives a single message from the
central hub, containing an encrypted aggregate vector ik =∑
j i
j
k and matrix Ik =

∑
j I
j
k, which it decrypts with its secret

key and merges into its (unencrypted) prediction according to

Ce
k =

(
(Cp

k)
−1 + Ik

)−1
,

x̂ek = Ce
k

(
(Cp

k)
−1 x̂pk + ik

)
.

Note that because the agent only receives aggregate values,
rather than individual measurement results, it would be very
hard for any adversary controlling it to reconstruct the layout of
the sensor grid or to obtain details of the individual sensors from
this data, as doing so would require solving an underdetermined
system of equations with an unknown number of unknowns.
This is because the total number of aggregated measurements
is never transmitted and may vary from aggregate to aggregate,
e.g. if some sensors are unable to obtain a measurement because
of terrain. This finally allows us to satisfy the security goal S1.

D. Encoding the Measurement Data
A major hurdle when applying cryptographic methods to

signal processing is the fundamental difference in their compu-
tation domains: whereas signal processing operates primarily



with real floating-point numbers, the Paillier cryptosystem
and many other homomorphic encryptions operate on finite
groups, specifically integers modulo a large semiprime. Before
encrypting their measurements, the sensors in PPIF must
therefore quantize the raw floating-point data into fixed-point
values. We define this quantization q : R→ Z as q(r) = b2fre,
where f is the desired fractional precision in bits. The reverse
conversion q−1 : Z→ R is then given as q−1(d) = 2−fd. The
precision loss of this conversion is bounded by 2−(f+1).

Because the Paillier cryptosystem only accepts plaintexts
from the finite ring Zn (integers modulo semiprime n) rather
than Z, we only have a limited range of accepted values. In
practice, however, this is not particularly restrictive, even with
a large fractional precision, since n needs to be very large to
guarantee sufficient security. The German Federal Office for
Information Security, for instance, currently recommends at
least 2000 bit length for factoring moduli in RSA and similar
cryptosystems [52].

An additional challenge arises when we want to encrypt
negative numbers, since the range of Zn is normally defined
as [0, n). This, however, is elegantly solved through a quirk
of modular arithmetic, namely that −a ≡ (n − a) (mod n).
With this, we can map negative measurements to the upper
half of the plaintext domain and still reap full benefits of the
homomorphic operations. While this mapping effectively halves
the largest allowed plaintext value, it is hardly significant, given
the enormous size of the plaintext domain.

Finally, we must define the encoding of arrays (vectors and
matrices). Since Paillier cannot natively encrypt such structures,
we must preserve the array layout, simply replacing plaintext
values with their encryptions. Fortunately, every transmitted
message in the PPIF protocol contains the same number of
values, since the sizes of ijk, Ijk, and their respective aggregates
are fixed and dependent only on the size of the agent’s system
state. Because each message has the exact same length, the
semantic security offered by the Paillier schema holds for them
just as well as for the individual ciphertexts therein (see [43,
Theorem 11.6]).

For data aggregation purposes, the arrays can be simply
summed up element-wise using the homomorphic addition
operation of the Paillier schema. To conserve computing power
and bandwidth, we may exploit the symmetry of Ijk and only
encrypt and transmit its main diagonal and values above it.

VI. EVALUATION

In this section, we evaluate our proposed PPIF protocol with
regard to its accuracy and security.

A. Accuracy

The first thing to note when evaluating our PPIF pro-
tocol is that the encryption itself has no effect on the
accuracy of its resultant estimates. This follows from the
basic correctness property of the encryption scheme, i.e. that
Decsk(Encpk (m)) = m, which was proven in Paillier’s
original work. This property holds regardless of whether
homomorphic operations have been applied to the ciphertext,

Fig. 1: Each sensor j measures the distance and angle to agent
A and sends the information form to its intermediary hub IH
for aggregation, which, in turn, sends it on to the central hub
CH. Grayed-out sensors are outside the maximum measurement
range.

as long as the plaintext within remains bounded by the public
modulus n (or by the range [−n2 ,

n
2 ) if we encode for negative

plaintexts), which, as we have discussed in the previous section,
should be the case in realistic scenarios.

It is clear then, that the only phase of our protocol that can
reduce its resultant accuracy (compared to an unencrypted exe-
cution on the original floating-point inputs) is our quantization
method. To evaluate its effects under different parameters, we
have developed a simulation1 (see Figure 1), wherein a mobile
agent is initially placed on a uniformly random position at
the edge of the 2D square field. Fo the sake of simplicity, its
velocity vector is sampled from N (0,Cw

k ) once at the start
of the run and held constant for its entire duration. The agent
collects measurements from the sensors and estimates its own
location at every time step until it leaves the field, updating
the mean squared error (MSE) of both the encrypted and the
unencrypted estimators each time. The experiment is repeated
10 000 times to obtain Nest estimates.

The field is covered with a grid of 25 equidistant radar-
like sensors, arranged in a three-tier hierarchy, with the central
sensor aggregating all others’ data before sending it to the agent.
Each sensor simulates a noisy measurement of the agent’s
relative location in polar coordinates (with known uncorrelated
variances σ2

ϕ, σ
2
r ) and converts it to a linearized model in global

Cartesian coordinates. The result and its estimated covariance
(both in information form) are then quantized, encrypted, and
sent “upstream”. Each sensor has a maximum detection range
rmax and generates no measurements of its own until the agent
comes within said range (hubs do, however, send measurements
“upstream” if they receive any).

Table I shows some results produced by our simulation. In
all examples, the width of the simulated field is fixed at 100m,
σv is 5m/s; “BP” stands for the fractional precision in bits.
We observe that the PPIF and the unencrypted information
filter show very similar accuracy for fractional precision of
16 bit or higher, with their mean squared error converging

1The Python code is available at https://github.com/KIT-ISAS/PPIF.



TABLE I: Mean squared errors of the simulated PPIF estimates
and controls under different parameters.

BP σϕ σr rmax Nest MSEPPIF MSEIF

8 5◦ 2m 50m 190 991 1.497 207 52 1.398 596 18

8 5◦ 2m 200m 189 437 0.730 031 35 0.689 676 14

8 15◦ 5m 50m 186 230 11.945 691 1 8.567 850 67

16 5◦ 2m 50m 192 918 1.392 861 12 1.392 861 58

16 5◦ 2m 200m 187 828 0.687 671 72 0.687 672 86

16 15◦ 5m 50m 188 072 8.640 616 91 8.640 362 42

24 5◦ 2m 50m 192 897 1.393 730 54 1.393 730 55

24 5◦ 2m 200m 192 211 0.690 740 24 0.690 740 24

24 15◦ 5m 50m 196 549 8.643 080 32 8.643 080 91

down to a few square micrometers. We therefore conclude that
even with a relatively small fractional precision, the estimates
produced by the PPIF are as accurate for practical purposes as
those of an unencrypted information filter.

B. Security

In a previous section, we have already described the intuition
behind the proof of security of the PPIF against semi-honest
(passive) adversaries. We have identified that such an adversary
can eavesdrop on communication between sensors and agents,
or take control of (“corrupt”) either the agent, or one or more
of the sensors. Note that our security definition did not require
the sensor grid operator to be unable to learn anything about the
agent’s location, as that would deprive the grid of its primary
function; for the same reason, our protocol offers no security
against an adversary who corrupts the majority of the sensor
nodes. With this in mind, we have shown that:

• An eavesdropper cannot gain any information on the state
and properties of the agent and individual sensors, since
all data packages it can intercept have the same length
and are computationally indistinguishable from each other
under the decisional composite residuosity assumption.

• A corrupted sensor node cannot learn anything about
the agent beyond what it can directly measure, because
all messages it receives from its neighbors are computa-
tionally indistinguishable. Among other things, it cannot
distinguish how many measurements, if any, have been
aggregated in the message it had received.

• A corrupted agent cannot obtain any meaningful data about
the positions and internal properties of individual sensors,
as doing so would require it to solve an underdetermined
system of equations with an unknown number of variables.

At this point, however, we have to establish the limitations
of our security definition. For one, it offers no protection
against trivial side-channel attacks. An eavesdropper monitoring
network traffic in a realistic scenario can, for example, gain
a pretty good idea of the sensor grid’s topology, simply by
observing which nodes communicate with each other. While
this weakness can be mitigated, e.g. by having sensors randomly
send zero vector encryptions to arbitrary nodes to hide the real
payload, it would result in substantial additional computational
and network load. For simplicity’s sake, we have also neglected

the necessity of authenticating each message in order to avoid
man-in-the-middle injections; in practice, such authentication
would be implemented via digital signatures.

Lastly, while the protocol is relatively secure against passive
adversaries, it is highly vulnerable against malicious (active)
ones. Gaining control over any of the sensors, regardless of
its position in the grid, allows an active adversary to com-
pletely falsify the estimation results by transmitting arbitrary
“measurements” with an unrealistically small covariance as
overinflated information vectors. While such attacks are also
possible in the unencrypted setup, encrypting the measurements
lets the attacker hide its presence, as individual nodes cannot
implement local sanity checks on data sent by their neighbors
and isolate the malicious sensors. A much more complex
protocol is required to defend against active adversaries, which
will be the subject of our future research.

VII. CONCLUSION

We have described a practical solution for privacy-preserving
multisensor information filtering. Our PPIF protocol leverages
the additive homomorphic property of the Paillier encryption
scheme, and we have provided both a security definition for it
and a basic intuition for its cryptographic proof. We have also
evaluated its accuracy and found it comparable to that of an
unencrypted information filter. We therefore conclude that our
protocol is efficient and secure enough to be used in suitable
real world settings.

It is clear, however, that our protocol solves a very special
formulation of the state estimation problem. Specifically, in
order to use only homomorphic additions in the encrypted
domain, all parties (particularly the sensors) must have suf-
ficient computational power to carry out all other necessary
operations, e.g. matrix inversion and multiplication, locally in
plaintext. Furthermore, all data must be decrypted for both the
prediction and the final filtering step, making it impossible to
securely outsource these computations, e.g. into the cloud.

Our work here can serve as the foundation for future
solutions that would transcend the above limitations, but further
research into combining modern cryptography and signal
processing is necessary before these can be found.

REFERENCES

[1] D. L. Hall, C.-Y. Chong, J. Llinas, and M. E. Liggins II, Eds.,
Distributed Data Fusion for Network-Centric Operations, ser. The
Electrical Engineering and Applied Signal Processing Series. CRC
Press, 2013.

[2] C.-Y. Chong, “Forty Years of Distributed Estimation: A Review of
Noteworthy Developments,” in Proceedings of the IEEE ISIF Workshop
on Sensor Data Fusion: Trends, Solutions, Applications (SDF 2017),
Bonn, Germany, Oct. 2017.

[3] R. E. Kalman, “A New Approach to Linear Filtering and Prediction
Problems,” Transactions of the ASME - Journal of Basic Engineering,
vol. 82, pp. 35–45, 1960.

[4] D. Willner, C. B. Chang, and K. P. Dunn, “Kalman Filter Algorithms for
a Multi-Sensor System,” in Proceedings of the 15th IEEE Conference
on Decision and Control (CDC 1976), Clearwater, FL, USA, Dec. 1976.

[5] C.-Y. Chong, “Hierarchical estimation,” in MIT/ONR Workshop on C3
Systems, Monterey, California, USA, 1979.

[6] C.-Y. Chong, K.-C. Chang, and S. Mori, “Distributed Tracking in
Distributed Sensor Networks,” in Proceedings of the 1986 American
Control Conference (ACC 1986), Seattle, Washington, USA, 1986.



[7] H. R. Hashemipour, S. Roy, and A. J. Laub, “Decentralized Structures
for Parallel Kalman Filtering,” IEEE Transactions on Automatic Control,
vol. 33, no. 1, pp. 88–94, Jan. 1988.

[8] S. Grime and H. F. Durrant-Whyte, “Data Fusion in Decentralized Sensor
Networks,” Control Engineering Practice, vol. 2, no. 5, pp. 849–863,
Oct. 1994.

[9] B. Noack, State Estimation for Distributed Systems with Stochastic and
Set-membership Uncertainties, ser. Karlsruhe Series on Intelligent Sensor-
Actuator-Systems 14. Karlsruhe, Germany: KIT Scientific Publishing,
2013.

[10] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan, Estimation with Applications
to Tracking and Navigation: Theory, Algorithms, and Software. John
Wiley & Sons, 2001.

[11] B. Noack, J. Sijs, M. Reinhardt, and U. D. Hanebeck, “Treatment
of Dependent Information in Multisensor Kalman Filtering and Data
Fusion,” in Multisensor Data Fusion: From Algorithms and Architectural
Design to Applications, H. Fourati, Ed. CRC Press, Aug. 2015, pp.
169–192.

[12] Y. Bar-Shalom and L. Campo, “On the Track-to-Track Correlation
Problem,” IEEE Transactions on Automatic Control, vol. 26, no. 2,
pp. 571–572, Apr. 1981.

[13] S.-L. Sun and Z.-L. Deng, “Multi-sensor Optimal Information Fusion
Kalman Filter,” Automatica, vol. 40, no. 6, pp. 1017–1023, Jun. 2004.

[14] J. Steinbring, B. Noack, M. Reinhardt, and U. D. Hanebeck, “Optimal
Sample-Based Fusion for Distributed State Estimation,” in Proceedings
of the 19th International Conference on Information Fusion (Fusion
2016), Heidelberg, Germany, Jul. 2016.

[15] F. Govaers and W. Koch, “An Exact Solution to Track-to-track Fusion
at Arbitrary Communication Rates,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 48, no. 3, Jul. 2012.

[16] M. Reinhardt, B. Noack, and U. D. Hanebeck, “Advances in Hy-
pothesizing Distributed Kalman Filtering,” in Proceedings of the 16th
International Conference on Information Fusion (Fusion 2013), Istanbul,
Turkey, Jul. 2013.

[17] N. A. Carlson, “Federated Filter for Fault-tolerant Integrated Navigation
Systems,” in Proceedings of the IEEE Position Location and Navigation
Symposium (PLANS’88), Orlando, Florida, USA, 1988, pp. 110–119,
record ‘Navigation into the 21st Century’ (IEEE Cat. No.88CH2675-7).

[18] S. J. Julier and J. K. Uhlmann, “A Non-divergent Estimation Algorithm
in the Presence of Unknown Correlations,” in Proceedings of the IEEE
American Control Conference (ACC 1997), vol. 4, Albuquerque, New
Mexico, USA, Jun. 1997, pp. 2369–2373.

[19] J. Sijs and M. Lazar, “State-fusion with Unknown Correlation: Ellipsoidal
Intersection,” Automatica, vol. 48, no. 8, pp. 1874–1878, Aug. 2012.

[20] B. Noack, J. Sijs, and U. D. Hanebeck, “Algebraic Analysis of Data
Fusion with Ellipsoidal Intersection,” in Proceedings of the 2016 IEEE
International Conference on Multisensor Fusion and Integration for
Intelligent Systems (MFI 2016), Baden-Baden, Germany, Sep. 2016.

[21] B. Noack, J. Sijs, and U. D. Hanebeck, “Inverse Covariance Intersection:
New Insights and Properties,” in Proceedings of the 20th International
Conference on Information Fusion (Fusion 2017), Xi’an, China, Jul.
2017.

[22] B. Noack, J. Sijs, M. Reinhardt, and U. D. Hanebeck, “Decentralized
Data Fusion with Inverse Covariance Intersection,” Automatica, vol. 79,
pp. 35–41, May 2017.

[23] B. Chen, G. Hu, D. W. C. Ho, and L. Yu, “Distributed Covariance Intersec-
tion Fusion Estimation for Cyber-Physical Systems With Communication
Constraints,” IEEE Transactions on Automatic Control, vol. 61, no. 12,
pp. 4020–4026, Dec. 2016.
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