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Abstract—In this paper, we present a novel approach to
optimally fuse estimates in distributed state estimation for linear
and nonlinear systems. An optimal fusion requires the knowledge
of the correct correlations between locally obtained estimates.
The naive and intractable way of calculating the correct corre-
lations would be to exchange information about every processed
measurement between all nodes. Instead, we propose to obtain
the correct correlations by keeping and processing a small set
of deterministic samples on each node in parallel to the actual
local state estimation. Sending these samples in addition to the
local state estimate to the fusion center allows for correctly
reconstructing the desired correlations between all estimates.
In doing so, each node does not need any information about
measurements processed on other nodes. We show the optimality
of the proposed method by means of tracking an extended object
in a multi-camera network.

I. INTRODUCTION

Among other advantages, such as scalability, robustness, and
increased spatial coverage, multisensor systems can signifi-
cantly improve the estimation quality and performance over
a single sensor. The optimal strategy to treat the acquired
sensor data is a centralized processing of each measurement.
Although efficient techniques, such as the information form [1]
of the Kalman filter, can be named to pre-process and transmit
a plethora of measurements to a data sink, such centralized
estimation schemes are often not feasible. In particular, band-
width limitations, connectivity changes, or energy consumption
can render frequent communication intractable. In this regard,
it is a major advantage of distributed estimation techniques
that the processing load is distributed among the sensor nodes
and data transmissions can take place at arbitrary rates. Each
sensor node processes the locally acquired measurements and
computes an estimate of the system’s state. Consequently, the
sensor nodes deliver state estimates in place of sensor readings
to the data sink. In order to provide a global estimation result,
the local estimates received by the data sink are fused into a
single estimate, which is referred to as track-to-track fusion [2]
in the context of distributed target-tracking applications.

Compared to a centralized processing of all measurements,
distributed estimation techniques require more elaborate algo-
rithms that take care of possible correlations between the local
estimation errors. With the distributed Kalman filter [3], [4], it
has been demonstrated that a local processing of measurements

can be established such that the results can be combined after
arbitrarily many time steps into an optimal estimate. More
precisely, the optimal estimate is equivalent to the results of
a centralized Kalman filter. However, the distributed Kalman
filter is highly susceptible to any changes at both network
and node level. In particular, each node must be aware of the
other nodes’ sensor models, scheduling policies, and noise
parameters. Providing each node with full knowledge about
the network is infeasible in many applications. In [5], [6], the
required knowledge has been replaced by a hypothesis, which
leads to suboptimal results at the data sink if the hypothesis
deviates from the actual setup.

While the distributed Kalman filter constitutes a distributed
implementation of a single Kalman filter, most distributed
estimation systems consist of sensor nodes that are equipped
with local Kalman filters. Each filter independently computes
an optimal estimate given the local measurements. In general,
the local processing and subsequent fusion of Kalman filter
estimates does not yield the result of a single centralized
Kalman filter. This means that an optimal fusion of local
estimates is not equivalent to the centrally optimal estimate
given all measurements. This discrepancy has been studied,
for instance in [7], and can be addressed by a tracklet
fusion method [8], [9], which extracts the new information
from each local estimate compared to the last fusion result.
However, either a full-rate communication to the data sink or
an augmented state representation [10] is required in order to
compute the optimal estimate and to prevent over-optimistic
fusion results. In the latter case, joint state densities are
employed to allow for irregular data transmissions.

The general problem when local estimates are to be fused
resides in the lack of independence between their estimation
errors. An optimal fusion result is only attainable if the
correlation structure is known to the fusion system and can
be exploited. The according algorithm is known as the Bar-
Shalom/Campo fusion rule [7]. However, cross-correlations
between estimation errors are difficult to maintain or to
reconstruct. For the purpose of fusing arbitrary estimates,
conservative fusion rules, like covariance intersection [11]
or ellipsoidal intersection [12], have been proposed, which
provide consistent fusion results irrespective of the correlation
structure but are often too pessimistic.



This paper is dedicated to a sample-based technique for
reconstructing cross-correlations between estimation errors
that result from common process noise and the common
initialization of the local Kalman filters. In [13], it has
been demonstrated for local ensemble Kalman filters that a
sample-based reconstruction of cross-correlations is possible.
In [14], different random sampling strategies are used to
account for correlated and uncorrelated noise terms separately.
There, the joint covariance matrix, and in particular the cross-
correlations, can be reconstructed from the local sample sets by
synchronizing the samplers for the correlated parts. While this
joint covariance matrix only asymptotically (in the number of
samples) approaches the true one, the technique proposed in this
paper allows for an exact reconstruction of the joint covariance
matrix. As an important advantage, only a simple deterministic
sampling scheme is used to obtain the desired cross-correlations.
This approach enables us to optimally fuse locally computed
estimates, as explained in the following sections.

II. PROBLEM FORMULATION AND KEY IDEA

We consider estimating the state xk of a discrete-time
stochastic dynamic system based on measurements from several
sensor nodes1. In order to reduce the amount of measurement
data which has to be sent to a fusion center, we pursue
distributed state estimation. More precisely, each sensor node
performs a local state estimation only by using its own
measurements with the Kalman filter or one of its derivatives,
such as the unscented Kalman filter (UKF) [15], consisting
of the usual alternating prediction steps and measurement
updates. Thus, the local state estimate at time step k of the i-th
node is a mean vector x̂(i)k|k and a covariance matrix P

(i)
k|k. In

doing so, measurements are pre-processed on a node and their
information is encoded in the local state estimate. Now, instead
of directly sending the measurements to the fusion center, all
nodes can simply send their local estimate.

To fuse the local state estimates, the fusion center has to
build the joint mean vector

m̂k|k =
[
(x̂

(1)
k|k)
>, . . . , (x̂

(L)
k|k )

>
]>

(1)

and especially the joint covariance matrix
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P
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where L denotes the number of local estimates to be fused.
Based on m̂k|k and Jk|k, a weighted least squares fusion, i.e.,
the Bar-Shalom/Campo formulas [7] for the multisensor case,
gives the fused state mean and state covariance according to

Pk|k =
(
H>

(
Jk|k

)−1
H
)−1

,

x̂k|k = Pk|kH
> (Jk|k

)−1
m̂k|k ,

(3)

1Vectors are underlined and matrices are printed bold face.

with H =
[
I, · · · , I

]>
and I the identity matrix of the system

state dimension. However, the fusion process requires, in
addition to the known covariances P

(i)
k|k, the cross-covariance

matrices P
(i,j)
k|k between all local estimates. These are non-zero

especially due to the common process noise used in all nodes
to model the temporal behavior of the system. Unfortunately,
the fusion center cannot reconstruct P(i,j)

k|k only from the local
state estimates.

The key idea of our approach to reconstruct the correct
cross-covariance matrices P

(i,j)
k|k is to use samples: besides the

actual local state estimate, each node keeps and processes a
set of samples that encodes the correlations between its own
estimate the state estimates from other nodes. The samples are
obtained in a very similar way to the ensemble Kalman filter
(EnKF) [16]. Then, in order to compute the correlations, the
nodes only have to send their set of samples in addition to their
local state estimate to the fusion center. With these, the fusion
center can obtain the correlation between the i-th and j-th
sensor node by simply computing the sample cross-covariance
using their respective sample sets.

The additional overhead of sending the samples generally
is cheaper than transmitting the measurements themselves
to the fusion center, particularly if each node performs
several state predictions and measurement updates between
two transmissions. Our sample-based correlation reconstruction
approach offers several advantages:
• it can exactly reconstruct the correlations between all local

state estimates,
• a sensor node does not need any information about

measurements processed at other nodes, neither the
used measurement models nor the number of processed
measurements,

• the only additional overhead for data transfer are the
samples of each node,

• the number of samples required to correctly reconstruct
all correlations does not depend on the number of utilized
sensor nodes, and thus, does not increase with the number
of nodes, and finally

• additional sensor nodes can be simply added over time
without affecting the other nodes, i.e., a node is not
aware of how many nodes are currently in use for state
estimation.

In the next section, we explain the theoretical concepts and
workflow of an optimal fusion technique for distributed state
estimation using this sample-based correlation reconstruction
approach.

III. OPTIMAL SAMPLE-BASED FUSION FOR
DISTRIBUTED LINEAR STATE ESTIMATION

After motivating our sample-based correlation reconstruction
approach in Section II, we present an optimal sample-based
fusion algorithm for linear systems. Based on this, we formulate
the sample-based distributed state estimation for nonlinear
systems in Section IV.

At its core, our approach relies on a regular data exchange
between the sensor nodes and the fusion center. For P time



steps, each node performs a local state estimation including
the adaption of its correlation samples. After not more than P
time steps, nodes send their local state estimate and correlation
samples to the fusion center, where this information is used
to compute a fused state estimate, which is then sent back
to each node. Using this, every node re-initializes its local
state estimate and correlation samples with the just fused state
estimate, and again locally estimates the system state for P
time steps. In this way, the node’s local estimation quality
profit from the information of the fused estimate. Moreover,
the re-initialization of the samples is necessary to guarantee the
correctness of the correlations obtained from the samples. In the
following, we explain every aspect of our distributed estimation
approach step by step, starting with a formal description of
the system state estimation.

A. System Description

The temporal evolution of the considered discrete-time
stochastic linear dynamic system with state xk is described by

xk = Akxk−1 +Bkwk ,

where wk denotes zero-mean and white Gaussian noise with
covariance Qk. It is assumed that wk is uncorrelated with the
system state for all time steps.

Over time, the i-th sensor node receives noisy measure-
ments ỹ(i)

k
which are assumed to be generated according to

the linear measurement model

y(i)
k

= H
(i)
k xk + v

(i)
k ,

where v
(i)
k again denotes zero-mean and white Gaussian

noise with covariance R
(i)
k . It is also assumed that v(i)k is

uncorrelated with the system state, the system noise wk, and
the measurement noise v(j)k with j 6= i for all time steps.

B. (Re-)Initialization of State Estimate and Correlation Samples

At a regular basis, the fusion center sends the latest fused
state estimate x̂k|k and Pk|k to all sensor nodes. In particular,
for k = 0, i.e., the first processing step, x̂0|0 and P0|0 are sent.
Using this, we first re-initialize the local state estimate of the
i-th node according to

x̂
(i)
k|k = x̂k|k ,

P
(i)
k|k = Pk|k .

(4)

Second, we also need to re-initialize the set of samples used
for reconstructing the correlations. To achieve this, we consider
the joint space of the system state at time step k and the system
noise for the next P time steps, i.e.,

dk =
[
x>k , w

>
k+1, . . . , w

>
k+P

]>
, (5)

where P is to be determined by the user, and controls how
many time steps each node can perform before the next node
re-initialization is necessary. For an N -dimensional system
state xk and a W -dimensional system noise wk, the dimension
of the joint space dk is D = N + P ×W .

Furthermore, all nodes generate the identical set {p(m)}Mm=1

of M = D+1 equally weighted samples p(m) of dimension D,
for which the sample mean is zero and the sample covariance
matrix yields the identity, that is,

1

M

M∑
m=1

p(m) = 0 ,
1

M

M∑
m=1

p(m)(p(m))> = ID×D .

The samples are generated with the simple deterministic
spherical simplex sampling method proposed in [17]. Note
that M cannot be further reduced as D + 1 is the minimum
number of samples required to represent a valid covariance
matrix of dimension D ×D.

Then, we construct a covariance matrix for the joint space dk
according to

Dk = diag
(
Pk|k,Qk+1, . . . ,Qk+P

)
.

The block diagonal structure of Dk reflects that the system
noise is assumed to be white and uncorrelated with the
system state for all time steps. By computing the Cholesky
decomposition LkL

>
k = Dk and using the samples {p(m)}Mm=1,

we get a set of M equally weighted samples

d
(m)
k = [(s

(i,m)
k|k )>, (w

(m)
k+1)

>, . . . , (w
(m)
k+P )

>]>

= Lkp
(m) , ∀m = 1, . . . ,M ,

(6)

for which again the sample mean is zero, but the sample
covariance matrix is equal to Dk. By partitioning the samples
d
(m)
k into the respective subspaces for the system state and for

each system noise for the next P time steps, on the one hand
we get the desired set {s(i,m)

k|k }
M
m=1 of the correlation samples

for the i-th node, and on the other hand P sets of system
noise samples {w(m)

k+1}Mm=1, . . . , {w
(m)
k+P }Mm=1. The latter will

be used in Section III-C to predict the correlation samples in
parallel to the local state estimate.

It is important to note that, although the correlation samples
{s(i,m)

k|k }
M
m=1 lie in the system state space, and thus, the samples

are of the state dimension N , they are not used to locally
estimate the system state. They are only used for encoding
the correlations between the local estimates. Moreover, the
re-initialized correlation samples and the system noise samples
are the same on all nodes. This is because the matrix Dk

and samples {p(m)}Mm=1 are identical for all nodes. However,
over time, the samples {s(i,m)

k|k }
M
m=1 will change for each node

individually, depending on the performed measurement updates.

As mentioned in Section II, the correlation between node
estimates is obtained from the cross-covariance matrix of their
respective samples. From the fact that the just re-initialized
correlation samples are identical for all nodes, it holds that

P
(i,j)
k|k =

1

M

M∑
m=1

s
(i,m)
k|k (s

(j,m)
k|k )>

=
1

M

M∑
m=1

s
(i,m)
k|k (s

(i,m)
k|k )> = Pk|k , ∀i 6= j .



Consequently, the local state estimates of all nodes are fully
correlated after a re-initialization. This makes sense, as we
re-initialize all nodes with the same system state estimate, and
thus, with the same information we have about the current
system state.

C. The Time Update

The prediction step on each node is twofold. On the one
hand, we have to predict the local state estimate x̂

(i)
k−1|k−1

and P
(i)
k−1|k−1 from time step k − 1 to k. Due to the linear

system model, this is performed with the optimal Kalman filter
prediction formulas

x̂
(i)
k|k−1 = Akx̂

(i)
k−1|k−1 ,

P
(i)
k|k−1 = AkP

(i)
k−1|k−1A

>
k +BkQkB

>
k .

(7)

On the other hand, we also have to predict the correlation
samples {s(i,m)

k−1|k−1}
M
m=1 from time step k − 1 to k. This is

accomplished by utilizing the corresponding system noise sam-
ple set {w(m)

k }Mm=1 generated during the node re-initialization
according to

s
(i,m)
k|k−1 = Aks

(i,m)
k−1|k−1 +Bkw

(m)
k , ∀m = 1, . . . ,M . (8)

The sample prediction is identical to a prediction done by the
EnKF, except for the selection of system noise samples. In
the EnKF, usually a random sample is drawn from the system
noise distribution for each state sample. Such noise samples,
however, do neither necessarily reflect the correct distribution
of the system noise nor guarantee noise samples which are
uncorrelated with the state samples or with the noise samples
from past prediction steps.

Finally, remember that the used noise samples {w(m)
k }Mm=1

are the same on all nodes. This fact reflects the common process
noise all nodes have to take into account.

D. The Measurement Update

If a new measurement ỹ(i)
k

is available at time step k, we
can perform a measurement update on the i-th node. Compared
to the state prediction, the measurement update of the local
state estimate and the correlation samples are more coupled.
First, we compute the Kalman gain

K
(i)
k = P

(i)
k|k−1(H

(i)
k )>

(
H

(i)
k P

(i)
k|k−1(H

(i)
k )> +R

(i)
k

)−1
.

Based on this, we perform the common Kalman filter update
for the local state estimate

x̂
(i)
k|k = x̂

(i)
k|k−1 +K

(i)
k (ỹ(i)

k
−H

(i)
k x̂

(i)
k|k−1) ,

P
(i)
k|k = (I−K

(i)
k H

(i)
k )P

(i)
k|k−1 .

(9)

Finally, we also use the Kalman gain to update each correlation
sample individually

s
(i,m)
k|k = (I−K

(i)
k H

(i)
k )s

(i,m)
k|k−1 , ∀m = 1, . . . ,M . (10)

Note that, in contrast to the time update, we do not need
any noise samples from the measurement noise distribution. In

addition, the measurement ỹ(i)
k

also has no influence on the cor-
relation samples. This is different from the EnKF measurement
update, where noise samples are strictly necessary and also
the measurement influences the state samples. However, due
to the fact that we only use the samples to obtain correlations
(not the local state estimate itself) and that the measurement
noise from different nodes are assumed to be uncorrelated,
measurement and noise samples are omitted in our case.

In case of no measurement being available at sensor node i,
we simply keep the predicted quantities, i.e., x̂(i)k|k = x̂

(i)
k|k−1,

P
(i)
k|k = P

(i)
k|k−1, and s(i,m)

k|k = s
(i,m)
k|k−1 , ∀m = 1, . . . ,M .

E. The Optimal Fusion

After all nodes have performed P prediction steps (and,
potentially, measurement updates in between) since the last
re-initialization at time step k, we want to compute an
optimal fused state estimate at the fusion center. For this
purpose, each node sends their current local estimate x̂(i)k+P |k+P

and P
(i)
k+P |k+P together with its set of correlation samples

{s(i,m)
k+P |k+P }

M
m=1 to the fusion center.

Here, the joint state mean (1) is built out of the local state
means x̂(i)k+P |k+P . Additionally, we compute the correlations
between all local state estimates according to

P
(i,j)
k+P |k+P =

1

M

M∑
m=1

s
(i,m)
k+P |k+P (s

(j,m)
k+P |k+P )

> , (11)

with i 6= j. The proof of the correctness of the correlations
obtained from (11) is given in the Appendix. Together with the
local state covariances P

(i)
k+P |k+P , the joint state covariance

matrix (2) is built. Finally, with the aid of (3), the fused
state mean x̂k+P |k+P and the fused state covariance matrix
Pk+P |k+P is obtained. This fused state estimate is then
transferred back to each node to re-initialize their local
estimates and correlation samples.

Note that we only have to fuse the local state estimates of
those nodes, which have conducted at least one measurement
update since the last re-initialization at time step k. Nodes,
which have only performed prediction steps, yield no additional
information about the current system state, and thus, their
estimates can be ignored. Please also note that the nodes do
not necessarily have to perform P predictions before a fusion
can be accomplished.

F. Summary

Algorithm 1 summarizes the entire sample-based distributed
state estimation procedure in the case of S sensor nodes.
Additionally, Figure 1 illustrates the data flow in the sensor
network. It can be seen from the data flow that a node does not
need to know any information about measurements processed
at other nodes, neither the used measurement models nor the
number of processed measurements. Moreover, additional nodes
can be added over time by simply sending the fused state mean
and state covariance matrix at the next node re-initialization.

The maximum number of prediction steps P can be defined
by the user. The choice depends on how often a fused state



Algorithm 1 Sample-Based Distributed State Estimation

1: Set initial state estimate x̂0|0 and P0|0 at the fusion center
2: for k = 0, P, 2P, . . . do
3: Fusion center sends current state estimate x̂k|k and Pk|k

to all nodes
4: for 1 ≤ i ≤ S do
5: i-th node sets local state estimate according to (4)
6: i-th node gets correlation samples according to (6)
7: for 1, . . . , P do
8: i-th node performs state prediction (7), (8)
9: i-th node performs measurement update (9), (10)

10: end for
11: i-th node sends estimate x̂(i)k+P |k+P and P

(i)
k+P |k+P ,

and samples {s(i,m)
k+P |k+P }

M
m=1 to fusion center

12: end for
13: Fusion center computes new state estimate x̂k+P |k+P

and Pk+P |k+P with (1)–(3) and (11)
14: end for

estimate is required and how much data for the correlation
samples is allowed to be sent. The larger P the larger will
be the joint space of system state and system noise (5). Thus,
more correlation samples are required, which have to be sent
to the fusion center. However, keep in mind that the memory
consumption only for the correlation samples is

N ×M = N2 +N(P ×W ) +N .

As a consequence, the data that has to be sent to the fusion
center increases only linearly in the maximum number of
prediction steps P .

Furthermore, as each node can generate the necessary
samples {p(m)}Mm=1 on their own, they never have to be sent
through the network. Note also that the order of correlation
samples and system noise samples is important, and has to be
the same for all nodes to correctly compute the correlations.

Instead of using (6) to obtain the system noise samples
{w(m)

k }Mm=1, we could rely on pseudo random number genera-
tors with the same seed for each node. However, the resulting
noise samples would only asymptotically approach the assumed
whiteness and uncorrelatedness with the system state. Thus, in
practice the fused state estimate would never be identical to the
optimal solutions like our approach. Moreover, the only way
to mitigate the errors introduced by the violated correlation
assumptions is to use many random samples, which in turn
would drastically increase the communication overhead.

IV. SAMPLE-BASED FUSION FOR DISTRIBUTED STATE
ESTIMATION IN THE NONLINEAR CASE

In this section, we apply the sample-based distributed state
estimation technique from Section III to nonlinear problems.
More precisely, for the i-th sensor node we now consider the
nonlinear measurement model

y(i)
k

= h
(i)
k (xk) + v

(i)
k , (12)

Fusion
Center

Node 1 . . . Node S

x̂k|k
Pk|k

x̂
(1)
k+P |k+P

P
(1)
k+P |k+P

{s(1,m)
k+P |k+P }

M
m=1

x̂
(S)
k+P |k+P

P
(S)
k+P |k+P

{s(S,m)
k+P |k+P }

M
m=1

Figure 1: Data flow over time in the sample-based distributed
state estimation approach. Every P time steps, the nodes send
their estimates and samples to the fusion center, where this
information is used to compute a fused state estimate, which
is then sent back to each node.

where v(i)k is defined as in Section III.

In order to apply (12) to our distributed estimation algorithm,
we need linear approximations. These approximations can
be obtained, for example, using explicit linearization around
the prior state mean as it is done by the extended Kalman
filter (EKF) [18]. However, this type of linearization is very
sensitive to the prior state mean, as it does not consider the
state uncertainty for the linearization. In particular, an EKF
using difference quotient approximations for the Jacobian did
not work out in our target tracking evaluation presented in
Section V. That is, the estimation results from our approach
diverged significantly from the optimal solutions.

Instead, we propose to rely on statistical linearization, e.g.,
done by sample-based Kalman filters such as the unscented
Kalman filter (UKF) [15] or the smart sampling Kalman
filter (S2KF) [19], [20]. Statistical linearization requires to
compute the measurement mean

ŷ(i)
k

=

∫
RN

h
(i)
k (xk)N (xk; x̂

(i)
k|k−1,P

(i)
k|k−1) dxk ,

the measurement covariance matrix

Y
(i)
k =

∫
RN

(h
(i)
k (xk)− ŷ

(i)

k
)(h

(i)
k (xk)− ŷ

(i)

k
)>·

N (xk; x̂
(i)
k|k−1,P

(i)
k|k−1) dxk +R

(i)
k ,

and the cross-covariance matrix of predicted state and mea-
surement

C
(i)
k =

∫
RN

(xk − x̂
(i)
k|k−1)(h

(i)
k (xk)− ŷ

(i)

k
)>·

N (xk; x̂
(i)
k|k−1,P

(i)
k|k−1) dxk .

In general, these integrals cannot be solved analytically, and
approximations from sample-based Kalman filters are the means
of choice to obtain them.

Using the above moments, we can get an optimal linear
approximation of (12) in the Mean Square Error (MSE) sense,
e.g., see [21]. Based on this linear approximation, we can
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Figure 2: Sensor network consisting of six Microsoft Kinect
cameras (orange), sphere to be tracked (blue), and parts of the
sphere’s trajectory (green).

change (9) and (10) according to

x̂
(i)
k|k = x̂

(i)
k|k−1 +C

(i)
k (Y

(i)
k )−1(ỹ(i)

k
− ŷ(i)

k
) ,

P
(i)
k|k = (I−C

(i)
k (Y

(i)
k )−1(C

(i)
k )>(P

(i)
k|k−1)

−1)P
(i)
k|k−1 ,

s
(i,m)
k|k = (I−C

(i)
k (Y

(i)
k )−1(C

(i)
k )>(P

(i)
k|k−1)

−1)s
(i,m)
k|k−1

in order to perform the (linear) measurement update from
Section III-D for the nonlinear model (12).

V. EVALUATION

In this section, we show that our sample-based correlation
reconstruction approach yields the same results as the optimal
fusion where the exact correlations are at hand. Our goal is
to track a sphere of known radius r = 10 cm in a network
consisting of six Microsoft Kinect depth cameras (see Figure 2)
like in [22]. Each camera is a separate node that only processes
its own measurements. The number of time steps between two
estimate fusion operations is set to P = 5. In addition, the first
Kinect node acts as fusion center. This implies that in each
time step, where no fusion of local state estimates happens,
only the local state estimate of this node will serve as the
“fused” state estimate.

The to be estimated system state xk = [c>k , ν
>
k ]
> comprises

the sphere’s position ck = [cxk, c
y
k, c

z
k]
> as well as its velocity

νk = [νxk , ν
y
k , ν

z
k ]
>. We model the temporal evolution of the

sphere by means of a constant velocity system model with
time-invariant matrices

A =

[
I3×3 T · I3×3
03×3 I3×3

]
, B =

[
T · I3×3
I3×3

]
, Q = I3×3 ,

where the time period T is 30ms.
Each Kinect camera provides us with a large number of

3D noisy point measurements per time step from the sphere’s
surface. Additionally, a camera can only generate measurements
within a limited field of view, and as a consequence, a camera

Algorithm 2 computeSource (see [22])

Input: State xk, camera position m, and measurement ỹ(i)
k

d = normalize(ỹ(i)
k
−m) e = ỹ(i)

k
− ck

a = d>e b = a2 − (e>e− r2)
if b < 0 then
n = normalize(ck −m)

if e>n < 0 then
z
(i)
k = ck + r normalize(e)

else
l = ỹ(i)

k
− (e>n/d>n)d

z
(i)
k = ck + r normalize(l − ck)

end if
else
d1 = −a+

√
b d2 = −a−

√
b

if d1 < d2 then
z
(i)
k = ỹ(i)

k
+ d1d

else
z
(i)
k = ỹ(i)

k
+ d2d

end if
end if

Output: Measurement source z(i)k

does not measure points in each time step. For the measurement
model, we assume that each point measurement ỹ(i)

k
is corrupted

by additive white Gaussian noise v(i)k with covariance R
(i)
k ,

which leads to the measurement model

y(i)
k

= z
(i)
k + v

(i)
k ,

where z(i)k denotes the point on the sphere’s surface from which
the measurement ỹ(i)

k
originates, called the measurement source.

R
(i)
k is given by the non-isotropic Kinect measurement noise

proposed in [23].
Unfortunately, for each measurement ỹ(i)

k
, the true measure-

ment source z(i)k is not known. However, in order to obtain
the most probable source z(i)k for each measurement, we make
use of the so-called Greedy Association Model (GAM) [24].
To further improve the state estimation quality, we also make
use of the known position m of a Kinect camera to exploit
the geometrical interaction between camera, measurement,
and sphere. This leads to the nonlinear measurement source
approximation

z
(i)
k ≈ computeSource(xk,m, ỹ

(i)
k
) ,

listed in Algorithm 2. A more detailed description of this
measurement model can be found in [22]. In order to perform
the measurement updates, we use the moment approximations
from the UKF to compute the required moments ŷ(i)

k
, Y(i)

k ,
and C

(i)
k . Furthermore, we process measurements from a single

time step sequentially on each node.
We perform 50 Monte Carlo runs. In each run, the sphere

moves along the same nonlinear trajectory and we simulate



appropriate noisy measurements for the six Kinect sensors.
Thus, the number of measurements (see Figure 3a) does not
change between the runs. We compare our proposed sample-
based fusion approach against the optimal fusion where the
exact correlations are at hand. That is, we also use the UKF to
get the linear approximations for (12), but compute the exact
correlations with the knowledge of the measurements from all
nodes.

The results of the sphere position and sphere velocity Root
Mean Square Errors (RMSEs) are plotted in Figures 3b and
3c, respectively. It can be seen that the errors are the smallest
in those time steps, when the sphere is visible for the fusion
center node (“Kinect 1” in Figure 3a). In the other cases, the
respective errors have a sawtooth-shaped curve. This is due
to the constant velocity model and that fusions only happen
every fifth time step. But more importantly, the error curves of
the sample-based fusion and optimal fusion are identical for
all time steps. More precisely, the fused state means and state
covariance matrices only differ in an order of magnitude of
≈ 10−12. This small difference can be explained by numerical
effects imposed by the sample-based approach.

In our setup, each node requires M = 22 samples (D =
6+5× 3 = 21) for the correlation reconstruction. In total, this
makes only 6 × 22 = 132 values to be sent every fifth time
step from each node to the fusion center (besides the actual
local state estimate, of course). Opposed to this, on each node,
thousands of 3D measurements are available per time step.
Sending these would be much more demanding.

VI. CONCLUSIONS

In this paper, we proposed an optimal sample-based fusion
technique for distributed state estimation. The key idea of our
approach is to keep and process a small number of deterministic
samples on each sensor node. In order to correctly reconstruct
the correlations between local system state estimates, the
nodes only have to send their respective samples to the fusion
center, where the desired correlations are simply obtained by
computing sample cross-covariance matrices. In doing so, a
sensor node does not need any information about measurements
processed at other nodes. Moreover, the approach scales very
well with the number of utilized nodes. As expected, the
nonlinear target tracking evaluation showed that our sample-
based fusion yields the same results as the optimal fusion.

APPENDIX

We prove that the correlation between two sensor nodes
i and j can be correctly reconstructed when their respective
set of samples is initialized with (6), predicted with (8), and
updated according to (10).

It is assumed that both nodes are re-initialized in time step
k, and that the local state estimates are fully correlated with
P

(i,j)
k|k = Pk|k. Moreover, w.l.o.g. it is assumed that
1) the i-th node performs a prediction from time step k

to k + 1 followed by an update in time step k + 1 and
another prediction from time step k + 1 to k + 2, and
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(b) RMSE of the fused position estimates.
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(c) RMSE of the fused velocity estimates.

Figure 3: Distributed sphere tracking estimation results.

2) the j-th node performs a prediction from time step k
to k + 1 followed by another prediction from time step
k + 1 to k + 2 and finally performs an update in time
step k + 2.

Then, the correct correlation between their local estimates at
time step k + 2 is [25]

P
(i,j)
k+2|k+2 = (Ak+2D3(D1 +D2)A

>
k+2 +D4)D

>
5 ,

with

D1 = Ak+1P
(i,j)
k|k A>k+1 = Ak+1Pk|kA

>
k+1 ,

D2 = Bk+1Qk+1B
>
k+1 , D3 = I−K

(i)
k+1H

(i)
k+1 ,

D4 = Bk+2Qk+2B
>
k+2 , D5 = I−K

(j)
k+2H

(j)
k+2 .

The correlation samples of the i-th node are

s
(i,m)
k+2|k+2 = Bk+2w

(m)
k+2 +Ak+2D3Bk+1w

(m)
k+1

+Ak+2D3Ak+1s
(i,m)
k|k , ∀m = 1, . . . ,M ,



and the correlation samples of the j-th node are

(s
(j,m)
k+2|k+2)

> = (w
(m)
k+2)

>B>k+2D
>
5 + (w

(m)
k+1)

>B>k+1A
>
k+2D

>
5

+ (s
(j,m)
k|k )>A>k+1A

>
k+2D

>
5 , ∀m = 1, . . . ,M .

First, from the fact that the samples obtained from (6) have zero
mean, we can see that both sample means are zero according
to

ŝ
(i)
k+2|k+2 = Ak+2D3Ak+1ŝ

(i)
k|k = 0 ,

ŝ
(j)
k+2|k+2 = D5Ak+2Ak+1ŝ

(j)
k|k = 0 .

Second, for both nodes the samples obtained from (6) are
identical, and hence, it holds that

1

M

M∑
m=1

s
(i,m)
k|k (s

(j,m)
k|k )> = Pk|k ,

1

M

M∑
m=1

w
(m)
k+1(w

(m)
k+1)

> = Qk+1 ,

1

M

M∑
m=1

w
(m)
k+2(w

(m)
k+2)

> = Qk+2 ,

and

0 =
1

M

M∑
m=1

s
(i,m)
k|k (w

(m)
k+1)

> =
1

M

M∑
m=1

s
(i,m)
k|k (w

(m)
k+2)

>

=
1

M

M∑
m=1

s
(j,m)
k|k (w

(m)
k+1)

> =
1

M

M∑
m=1

s
(j,m)
k|k (w

(m)
k+2)

>

=
1

M

M∑
m=1

w
(m)
k+1(w

(m)
k+2)

> .

Finally, by exploiting these, the correlation between both nodes
obtained from their respective samples is

S
(i,j)
k+2|k+2 =

1

M

M∑
m=1

s
(i,m)
k+2|k+2(s

(j,m)
k+2|k+2)

>

= Ak+2D3Ak+1Pk|kA
>
k+1A

>
k+2D

>
5

+Ak+2D3Bk+1Qk+1B
>
k+1A

>
k+2D

>
5

+Bk+2Qk+2B
>
k+2D

>
5

= (Ak+2D3(D1 +D2)A
>
k+2 +D4)D

>
5

= P
(i,j)
k+2|k+2 .

REFERENCES

[1] Arthur G. O. Mutambara, Decentralized Estimation and Control for
Multisensor Systems. Boca Raton, Florida, USA: CRC Press, Inc.,
1998.

[2] Kuo-Chu Chang, Rajat K. Saha, and Yaakov Bar-Shalom, “On Optimal
Track-to-Track Fusion,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 33, no. 4, pp. 1271–1276, Oct. 1997.

[3] Hamid R. Hashemipour, Sumit Roy, and Alan J. Laub, “Decentralized
Structures for Parallel Kalman Filtering,” IEEE Transactions on Automatic
Control, vol. 33, no. 1, pp. 88–94, Jan. 1988.

[4] Felix Govaers and Wolfgang Koch, “On the Globalized Likelihood
Function for Exact Track-To-Track Fusion at Arbitrary Instants of Time,”
in Proceedings of the 14th International Conference on Information
Fusion (Fusion 2011), Chicago, Illinois, USA, Jul. 2011.

[5] Marc Reinhardt, Benjamin Noack, and Uwe D. Hanebeck, “The Hypoth-
esizing Distributed Kalman Filter,” in Proceedings of the 2012 IEEE
International Conference on Multisensor Fusion and Integration for
Intelligent Systems (MFI 2012), Hamburg, Germany, Sep. 2012.

[6] Marc Reinhardt, Benjamin Noack, and Uwe D. Hanebeck, “Advances in
Hypothesizing Distributed Kalman Filtering,” in Proceedings of the 16th
International Conference on Information Fusion (Fusion 2013), Istanbul,
Turkey, Jul. 2013.

[7] Yaakov Bar-Shalom and Leon Campo, “The Effect of the Common
Process Noise on the Two-Sensor Fused-Track Covariance,” IEEE
Transactions on Aerospace and Electronic Systems, vol. AES-22, no. 6,
pp. 803–805, Nov. 1986.

[8] Chee-Yee Chong, Kuo-Chu Chang, and Shozo Mori, “Distributed tracking
in distributed sensor networks,” in Proceedings of the 1986 American
Control Conference (ACC 1986), Seattle, Washington, USA, 1986.

[9] Chee-Yee Chong, Shozo Mori, Felix Govaers, and Wolfgang Koch,
“Comparison of Tracklet Fusion and Distributed Kalman Filter for
Track Fusion,” in Proceedings of the 17th International Conference
on Information Fusion (Fusion 2014), Salamanca, Spain, Jul. 2014.

[10] Wolfgang Koch and Felix Govaers, “On Accumulated State Densities
with Applications to Out-of-Sequence Measurement Processing,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 47, no. 4, pp.
2766–2778, Oct. 2011.

[11] Simon J. Julier and Jeffrey K. Uhlmann, “A Non-divergent Estimation
Algorithm in the Presence of Unknown Correlations,” in Proceedings of
the IEEE American Control Conference (ACC 1997), vol. 4, Albuquerque,
New Mexico, USA, Jun. 1997, pp. 2369–2373.

[12] Joris Sijs and Mircea Lazar, “State-fusion with Unknown Correlation:
Ellipsoidal Intersection,” Automatica, vol. 48, no. 8, pp. 1874–1878, Aug.
2012.
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