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Abstract— To reduce the amount of data transfer in networked
systems measurements are usually taken only when an event
occurs rather than periodically in time. However, a fundamental
assessment on the response of estimation algorithms receiving
event sampled measurements is not available. This research
presents such an analysis when new measurements are sampled
at well-designed events and sent to a Luenberger observer.
Conditions are then derived under which the estimation error
is bounded, followed by an assessment of two event sampling
strategies when the estimator encounters two different types of
disturbances: an impulse and a step disturbance. The sampling
strategies are compared via four performance measures, such as
estimation-error and communication resources. The result is a
clear insight of the estimation response in an event-based setup.

I. INTRODUCTION

Event-based state estimation is an emerging alternative to
classical, time-periodic estimators with many relevant appli-
cations in networked systems. In contrast to sampling pe-
riodically in time, event-based estimators employ an event
triggering criteria for taking new measurement samples at
instants of well designed events. Three examples of event
sampling are “Send-on-Delta” [1], “Integral Sampling” [2]
and “Matched Sampling” [3], of which two are illustrated
in Figure 1. Resource limitations of networked systems in
communication and energy are among the main motivations
for pursuing event-based estimation, since the event sampling
strategy employed aims to reduce the number of measurements
exchanged. As such, in the active research area of sensor man-
agement (see [4]), event based sampling is a particular sensor
scheduling solution related to flexible time-triggered sampling
approaches such as [5]. The added value of event sampling
is best noticed in networked systems with (simplistic) sensors
capturing continuous physical phenomena, e.g., temperature
and position sensors. Notice further that employing event
sampling will result in some extra computational power at
the sensor, so to reduce communication demands.

Control theory was one of the first areas to study event based
sampling. See, for example, the event-based control solutions
presented in [1], [6]–[8]. More recently, similar studies arose in
the estimation area as well, where several solutions for event-
based estimation have been presented. These solutions mainly
focused on finding a suitable approach for processing the event
sampled measurements. For example, by conducting an a-
periodic state estimator as proposed in [9] or by employing an
estimator specifically designed for event sampling strategies,
e.g., the estimators proposed in [10], [11].
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Fig. 1. Two event sampling strategies resulting in different sample instants.
One called Send-on-Delta where a new measurement y(te) is taken when the
distance with respect the preceding measurement y(te−1) is larger than some
scalar ∆, and one called Integral Sampling where the new sample y(te) is
triggered when the integral

∫ t
te−1
‖y(te−1)− y(υ)‖dυ exceeds the scalar ∆.

Rather then designing a new estimation method, the goal
of this paper is to analyze the effects of introducing an event
sampling approach for state estimation. To keep focus on the
effects instead of optimal estimation results, a Luenberger
observer (see [12]) is employed for estimating the state of
a scalar process. Important aspects such as the asymptotic
behavior of estimation error are analyzed for two event sam-
pling strategies. The remaining analysis focuses on the two
fundamental disturbances in the process noise: an impulse
disturbance and a step disturbance. The performance of the
Luenberger observer in case of these types of disturbances is
compared for the two event sampling strategies considered.
Important performance measures in this comparison are the
number of events triggered, the estimation error at the last
event instant (if it exists) and the asymptotic value of the
estimation error. In addition, a case study presents an extended
event sampling strategy taking the utility of a new measure-
ment sample into account when triggering the next event. The
presented study provides insight in the behavior of estimation
results, when sensors employ an event sampling strategy.

II. PRELIMINARIES

R, R+, Z and Z+ define the set of real numbers, non-
negative real numbers, integer numbers and non-negative
integer numbers, respectively, while ZP := Z∩ P for some
P ⊂ R. For a time-varying signal x(t) ∈ Rn, let x(te) denote
the value of x at the e-th sampling instant te ∈ R+ and let
x(t > t1) = c denote that x(t) = c for all t > t1 with similar
notations for ≥, < and ≤. Given a set P ⊂ R, then minP
represents the largest possible value such that minP ≤ c, for
all c ∈ P. The floor round-off function bxc : R→ Z is defined
as bxc := {n ∈ Z|n ≤ x,n+ 1 > x}, while the Dirac-function
for some value x ∈ R is denoted as δ (x) : R→{0,1}.



III. EVENT SAMPLING FOR ESTIMATION

A. System setup
Consider a continuous-time process modeled in state-space,

where x∈R denotes the state vector, w∈R denotes the process
noise and y ∈ R denotes the measurement, i.e.,

ẋ(t) = ax(t)+w(t), a < 0, (1)
y(t) = cx(t), c ∈ R.

The discrete-time form of the above process model, where
aτ := eaτ and qτ(t + τ) :=

∫
τ

0 ea(τ−υ)w(t +υ)dυ , yields

x(t + τ) = aτ x(t)+qτ(t + τ), τ ∈ R+,

y(t) = cx(t).
(2)

The sensor employs an event strategy for triggering the e-th
measurement sample denoted as y(te) used for state estimation.
Let us introduce Te⊂R+ as the collection of all event instants,
i.e., Te := {te | e ∈ Z+}. Yet, an estimated value of the state,
which is denoted by x̂(t), should not be limited to the instants
of an event t ∈ Te but be available at an time t ∈ R.

The main focus of this article is to study the effects of
event sampling on estimation results. More details introducing
specific topics of this study will be presented in the next sec-
tion. For now, it is important to note that the state estimation
approach is less relevant for this study than the methods used
for event sampling. For that reason a Luenberger observer is
employed to estimate the state, which is similar to a Kalman
filter when the “Kalman gain” is a constant design parameter
(see [12]). Estimation results of this observer are updated with
new measurement values at (a-periodic) events te, when y(te)
is received. In between two consecutive events te−1 and te the
state is predicted from the last event te−1. Hence, estimation
results x̂ of the Luenberger observer, for some Luenberger gain
κ ∈ R, sampling time τe := te − te−1 and unbiased process
noise w(t), are characterized as follows:{

x̂(te) = (1−κc)aτe x̂(te−1)+κy(te),
x̂(t) = at−te x̂(te) ∧ te< t< te+1

(3)

The evolution of the true x(t) after an event instant te is derived
from (2), and yields

x(t) = at−tex(te)+qt−te(te) ∧ t > te. (4)

A graphical representation of the system is depicted in Fig-
ure 2. Therein, the sensor value is continuously monitored for
events and sampled measurements are sent to the Luenberger
observer in case of an event. The event triggering criteria can
make use of a local Luenberger observer situated at the sensor.

B. Problem formulation
An important aspect for any observer is its estimation error,

which will be denoted as η(t) := x(t)− x̂(t). The evolution
of this error for the considered Luenberger observer has been
derived from (3) and (4) and yields{

η(te) = (1−κc)(aτeη(te−1)+qτe(te)) ,
η(t) = at−teη(te)+qt−te(t) ∧ te< t< te+1.

(5)
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Fig. 2. The considered set-up for event-based state estimation.

A “stable” observer implies that the estimation error η(te)
is bounded for all e ∈ Z+. One can then derive from (5) that
stability of the considered Luenberger observer will require
0 < (1−κc)aτe < 1, for all τe ∈ R+. Starting from a < 0 it
follows that 0 < aτe < 1, for all τe ∈R+. Thus, 0 < κc < 1 is
a necessary condition for obtaining stability.

The evolution of the estimation error introduced in (5)
is the starting point for studying the effects of event-based
sampling in state estimation. The study starts with a stability
analysis of the Luenberger observer agreeing to 0 < κc < 1.
More precisely, stability is studied as a dependency on the
disturbance w(t) and on the event sampling strategy employed.

In addition, a comparison study of the estimator’s perfor-
mance is made for two different event sampling strategies.
One strategy is purely based on sensory data and does not
require a local Luenberger observer, while the other sampling
strategy is allowed to exploit results of this local observer. The
comparison focuses on the estimation error in time and on the
required communication resources when the process is exited
at td ∈ R+ with one of the following two disturbances:

D1: An impulse on the process noise, i.e., x(0)− x̂(0) = 0
and w(t) = εδ (t− td), for some td ,ε ∈ R+;

D2: A step on the process noise, i.e., x(0)− x̂(0) = 0,
w(t < td) = 0 and w(t ≥ td) = ε , for some td ,ε ∈R+.

For a fair comparison, the error behavior is assessed with four
different performance measures M1 until M4.

M1: α ∈ Z+ is the number of samples e generated after
td , i.e., α is the cardinality of {e ∈ Z+ | te > td};

M2: tα − td is the time until the last event was triggered;
M3: η(tα) ∈R is the estimation error at the last event tα .
M4: η(∞) ∈ R is the asymptotic estimation error.
The presented studies on estimation error start with a

stability analysis, followed by the introduction of two typical
event sampling strategies. After that, the analysis continues
with the two fundamental disturbances and concludes with a
discussion on triggering new events depending on utility.

IV. ASYMTPOTIC ANALYSIS OF THE ESTIMATION ERROR

Stability of the event-based Luenberger observer is studied
via a continuous-time description of its estimation error in (5).

When considering continuous time, the evolution of the
estimation error η(t) as presented in (5) shows a switching
character, where switching takes place at the events t ∈ Te.
More precisely, the error characterization in (5) can be de-
scribed as the continuous-time outcome of a sequence of
subsystems, each denoted as Σe. A subsystem Σe is active



for all time t ∈ [te, te+1) and starts with an initial value η(te)
dependent on the results of previous subsystem Σe−1, i.e.,
η(te) = (1−κc) limt↑te η(t). To derive the evolution of η(t)
within each subsystem Σe, let us rewrite the discrete-time
form of η(t) in (5), i.e., η(t) = at−teη(te)+qt−te(t), into its
continuous form, i.e., η̇x(t)= aη(t)+w(t). Then, the evolution
of η(t) within each subsystem is defined as follows:

Σe : η̇x(t) = aη(t)+w(t), ∀t ≥ te,

and η(te) := (1−κc) lim
t↑te

η(t).

Though each subsystem Σe is characterized for t → ∞, note
that it could be taken over by the next subsystem Σe+1 at
t = te+1 (if triggered). The above characterization of η(t) via
a switched system is done for two reasons: 1. in case te is
the last sample instant, then Σe will run for t → ∞ and; 2.
stability of the total system can be decomposed into stability
per subsystem Σe. Hence, to prove under which conditions the
evolution of η(t) in (5) is stable, i.e., converging, let us first
prove stability of each subsystem Σe. Lyapunov stability of Σe,
for all e ∈ Z+, requires that w(t) = 0, for all t ∈ R+. Since
w(t) is unknown process noise, Lyapunov stability can never
be guaranteed. Instead, conditions for input-to-state stability
(ISS), i.e, η(t)< ∞ for all t ∈ R+, are derived.

Lemma IV.1 Let η(te) < ∞ be given for all te ∈ R+ and let
a < 0. Then, each subsystem Σe in (6) is ISS, for all e ∈ Z+.

The proof of this lemma is found in (Section 4.9, [13]). Let
us use this result to present a statement regarding the stability
of the considered Luenberger observer.

Lemma IV.2 Let η(0) < ∞, 0 < κc < 1 and a < 0. Then,
the sequence of subsystems Σe described in (6) and thus the
evolution of η(t) in (5) satisfies the conditions for ISS.

Proof: Lemma IV.1 gives that each subsystem Σe is ISS,
if η(te) < ∞, for all e ∈ Z+. This further implies that
the sequence of subsystems, and thus the evolution of
η(t) as characterized in (5), is ISS if η(te) < ∞ holds
for all e ∈ Z+. The value of η(te) is defined in (6), i.e.
η(te) = (1−κc) limt↑te η(t). Applying 0 < (1−κc)< 1, gives
that η(te) < limt↑te η(t). Notice that {limt↑te t} ∈ (te−1, te)
and thus limt↑te η(t) is the result of Σe−1 at te, which is ISS
if η(te−1) < ∞. Hence, η(te) < ∞ holds for all e ∈ Z+ if
η(te−1) < ∞. Starting from η(t0) < ∞ in combination with
the result of Lemma IV.1, it thus follows that η(te)< ∞, for
all e ∈ Z+, and thus η(t) in (5) is ISS. �

This completes the general analysis of event sampling for
the Luenberger observer. In continuation of this analysis, two
specific event triggering criteria are assessed when facing two
fundamental disturbances.

V. TWO GENERAL EVENT SAMPLING STRATEGIES

1) Send-on-Delta: The event sampling strategy “Send-on-
Delta” (SoD), as proposed by [1], triggers a new event sample

instant te+1 in case |y(t)−y(te)| is larger then some predefined
value ∆ ∈ R+. Hence, the triggering criteria of the next event
instant te+1 for SoD, yields

te+1 := min{t > te | |y(t)− y(te)| ≥ ∆}.

Since y(t) = c(at−tex(te) + qt−te(t)) and y(te) = cx(te), the
triggering condition of SoD results in the following property:

|c(at−te −1)x(te)+ cqt−te(t)|< ∆, ∀te < t ≤ te+1. (7)

2) Predicted sampling: The event sampling strategy “Pre-
dicted Sampling” (PS) triggers a new event sample instant
t = te+1 in case |y(t)− ŷ(t)| is larger then some predefined
value ∆ ∈ R+. Here, ŷ(t) is the predicted measurement of
the local Luenbergerer observer. Hence, the event instant te+1
according to PS yields,

te+1 := min{t > te | |y(t)− ŷ(t)| ≥ ∆}. (8)

Notice that SoD does not result in a bound on the estimation
error, as shown in (7). In contrast to that, the triggering
condition of PS was derived by starting from a bound on the
(modeled) estimation error η(t), i.e.,

|cη(t)|< ∆ ∀t ∈ R+,

⇒|cat−teη(te)+ cqt−te(t)|< ∆ ∀te < t ≤ te+1,

⇒|c(at−tex(te)+qt−te(t))− cat−te x̂(te)|< ∆ ∀te < t ≤ te+1.

Substituting y(t) = c(at−tex(te) + qt−te(t)) and ŷ(t) =
cat−te x̂(te), for all t > te, recovers the triggering condition (8).

VI. ESTIMATION ERROR UNDER DISTURBANCES

This section on the assessment of SoD and PS in case of
disturbances will use κc := (1−κc) for clarity of expression.

A. Impulse disturbance

This section analyzes the response of the event-based Luen-
berger observer in case of an impulse disturbance after starting
at its equilibrium, i.e., x(0)= 0, x̂(0)= 0 and w(t)= εδ (t−td).
Note that the process’ state and the observer’s estimated state
will remain zero until the disturbance at td takes place, which
further implies that the observer will trigger no events before
the disturbance. At td an impulse is injected into the process
via its process noise, which results in the following behavior
on the process’ state after the disturbance, i.e.,

x(t ≥ td) = εea(t−td) and y(t) = cx(t). (9)

Since the process and the observer are initialized with x(0) = 0
and x̂(0) = 0, the estimation error η(t) derived in (5) remains
zero until the impulse is injected. No event strategy is able to
trigger an event at the exact same instant as the disturbance
and thus η(td) = ε . After that, the discrete-time process noise
qt−td (t) = 0 remains zero for all t > td . Hence, when the
disturbance is detectable (∆ < cε) both SoD and PS trigger
a first event directly after td , i.e., t1 = limt↑td t, at which

η(t1) = κcat1−td η(td) = κcε. (10)



After this event, the evolution of η(t) for all t > t1, yields{
η(te+1) = κcaτeη(te), ∀te > td ,
η(t) = at−teη(te) ∀te < t < te+1).

(11)

The error analysis starts by summarizing the performance
measures M1 until M4 for both sampling strategies in Table I.
Their derivations are presented in Appendices A and B. In
addition, Figure 3 depicts the results of a simulated impulse,
where a =−1, ε = 1 c = 1, κ = 0.5 and ∆ = 0.1.

Send-on-Delta Predicted Sampling

α bcε∆−1c min{n ∈ Z≥1||c(κc)
n|< ∆}

tα − td a−1 ln
(
1− (α−1)∆(cε)−1) limτ↓0 τ

η(tα ) (κc)
α ε
(
1− (α−1)∆(cε)−1) (κc)

α

η(∞) 0 0

TABLE I
MEASURES M1 UNTIL M4 FOR AN IMPULSE DISTURBANCE.
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Fig. 3. A simulation example of the event-based Luenberger observer (Lo)
in case of an impulse disturbance at td = 1. The event instants of SoD are
denoted with “◦” while the event instants of PS are denoted with “×”.

Figure 3 shows that PS has all of its events co-located in
time directly after the disturbance. This is to make sure that the
estimation error decreases to a value ∆c−1 as fast as possible
(see Section V.2). As a result, the error of the Luenbergerer
observer has a faster decay when combined with PS than with
SoD. However, after some time the events triggered with SoD
result in an estimation error that remains smaller compared to
error with PS, though this aspect depends on ∆ and c.

B. Step disturbance

This section analyzes the response of the event-based Lu-
enberger observer in case of a step disturbance after starting
at its equilibrium, i.e., x(0) = 0, x̂(0) = 0, w(t < td) = 0 and
w(t ≥ td) = ε . Note that the process’s state and the observer’s
estimated state remain zero until the disturbance at td takes
place, which further implies that the observer will trigger no
events before the disturbance. At td a step is injected into the
process via its process noise, due to which the behavior of the
process’ state after the disturbance, yields

x(t ≥ td) =
ε

a

(
ea(t−td)−1

)
and y(t) = cx(t). (12)

The above characterization follows from the evolution of w(t)
in its discrete-time form presented in Section III, qτ(t + τ) =

∫
τ

0 ea(τ−υ)w(t +υ)dυ = ε
∫

τ

0 ea(τ−υ)dυ for all t ≥ td and thus

qτ(t + τ) =
ε

a
(eaτ −1) (13)

=
ε

a
(aτ −1) ∀t ≥ td .

The characterization in (12) implies that x(td) = 0 and thus
η(t) = 0, for all t ≤ td . An expression of estimation error after
the disturbance at td and just before the first event triggered
is derived, next. Starting from η(t ≥ td) = x(t ≥ td)− x̂(t ≥ td)
and substituting x(t ≥ td) of (12) and x̂(t ≥ td) = 0 for any
t < t1 results in the following error characterization until the
first event t1 takes place:{

η(t) = ε

a

(
at−td −1

)
, ∀ td ≤ t < t1,

η(t) = κc
ε

a

(
at−td −1

)
, if t = t1.

With this result and the characterization of qτ(t + τ) in (13)
one can derive the estimation error after the first event, i.e.,{

η(te+1) = κc
(
aτeη(te)+ ε

a (aτe −1)
)
,

η(t) = at−teη(te)+ ε

a (at−te −1) te < t < te+1.
(14)

When the disturbance is large enough to be detected, i.e.,
∆ < cε , then both SoD and PS will trigger their first event
some time after the disturbance. A detailed analysis starts
by deriving the different performance measures M1 until M4
for both sampling strategies. The derivations are presented in
Appendices C and D and a summary is given in Table II.
To that extent, let us introduce the functions γ(n,m) := c+a∆n

c+a∆m
and β (m) := ε∆

c+a∆m , for some n,m∈Z+. In addition, Figure 4
depicts the results of a simulated step, where a=−1, ε = 0.01
c = 1, κ = 0.5 and ∆ = 0.1.

Send-on-Delta Predicted Sampling

α b|εc(a∆)−1|c ∞

tα − td a−1 ln
(
1+ aα∆

εc

)
∞

η(tα ) κα
c c−1∆γ(α,1)η(t1)

+∑
α−1
m=1 κα−m

c γ(α,m+1)β (m) —
η(∞) −εa−1 < ∆|c|−1

TABLE II
MEASURES M1 UNTIL M4 FOR A STEP DISTURBANCE.

1 2 3 4 5
0

0.5

1

st
at

e

 

 

1 2 3 4 5
0

0.5

1

time

e x(t)

 

 

9 9.2 9.4
0

0.5

1

 

 

Lo−SoD
Lo−PS
real

9 9.2 9.4
0

0.5

1

time
 

 

Lo−SoD
Lo−PS

Fig. 4. A simulation example of the event-based Luenberger observer (Lo)
in case of a step disturbance at td = 1. The event instants of SoD are denoted
with “◦” while the event instants of PS are denoted with “×”.



Two interesting aspects are indicated in Table II and Fig-
ure 4. Firstly, the estimation error with SoD has an asymptotic
bias of − ε

a = 1. An explanation for this behavior starts by
noting that SoD triggers a finite amount of events. After
the last event the event-based Luenberger observer will keep
on predicting the estimated state x̂(t) and since the observer
assumes an unbiased process noise, x̂(t) converges back to
zero while the real state x(t) converges to 1 giving η(∞) = 1.
Event-based estimation with PS does not suffer from such a
severe asymptotically biased estimation error but is bounded
by 0.1, i.e., ∆|c|−1. It shows that the property of PS resulting
in a bounded estimation error |cη(t)| < ∆ for all t ∈ R+ is
satisfied, see Section V.2. The cost of this bound is that an
unlimited amount of events are required. Intriguingly, the event
instants seem to occur periodically in time, which brings us
to the second interesting aspect. After each event te, one can
derive that at−te ↓ 0 as t− te→ ∞, which further implies that
η(t) converges to − ε

a = 1 after each event te (see (14)). Yet,
PS will trigger a new event just before |cη(t)| > ∆ becomes
reality and thus η(t) will never converge to − ε

a . This situation
for triggering new events will continue until t→∞ and results
in a constant sampling time between two consecutive events.
A detailed account in this sampling time, which is denoted as
τs, is presented in Appendix D and yields

τs =
1
a

ln
(
|∆c−1|+ εa−1

κc|∆c−1|+ εa−1

)
.

VII. ILLUSTRATIVE CASE FOR TRIGGERING ON UTILITY

The illustrative case presented in this section considers a
scalar dynamical system as given in (1), i.e.,

ẋ(t) = ax(t)+w(t) and y(t) = cx(t),

where a =−1 and c = 1. The process noise w(t) is character-
ized with impulse disturbances, given that the time between
two impulses is a random value between 0 and 1 seconds, and
that the impulse amplitudes are Gaussian distributed (unbiased
and a covariance of 1). More precisely, w(t) is given by

w(t) = ∑
n∈Z+

εnδ (t− tn), where (15)

εn ∼N (0,1) and 0 < tn+1− tn < 1 ∀n ∈ Z+.

A Luenberger observer with κ = 0.5 estimates the state by
exploiting new measurements taken with an event sampling
strategy, e.g., SoD or PS. The Luenberger observer and sam-
pling strategies are designed for perceiving the following goal:

Track the state x(t), such that any disturbance on
x(t) is corrected in the estimated state x̂(t) within 0.1
seconds up to an acceptable error of |x(t)− x̂(t)| ≤ 0.2.

A. Event triggering with classical SoD or PS

Let us start by designing the threshold ∆ of the event
strategies SoD and PS, such that they accommodate the
above goal. Note that the illustrative case focuses on impulse
disturbances, due to which the analysis of Section VI-A holds.

SoD: The design of the threshold ∆ for SoD was done
by trial and error, which resulted in ∆ = 0.05. The
reason that a trial-and-error approach was employed
is because the estimation error of a Luenberger
observer with SoD depends on the amplitude of prior
impulses, which vary from one impulse to another
and can be unbounded with a very small probability.

PS: To derive a value of ∆, note that it was already
pointed out that PS will trigger as many events
directly after each other until |cη(tα)|<∆ is attained.
Hence, all events caused by one impulse disturbance
will be triggered within 0.1 seconds. Further, when
setting ∆= 0.2, one has a guarantee of |cη(tα)|< 0.2
satisfying the acceptable estimation error of 0.2.

A simulation was done with the above thresholds for a ’train’
of 1000 impulses in line with (15). To assess the results, let us
concentrate on two important aspects of the estimator, i.e., its
estimation results and the required communication resources
for achieving those results. More precisely,
• The estimation error of the Luenberger observer after 0.1

seconds of the n-th impulse, i.e., η(tn +0.1);
• The time interval between two consecutive events, where

only intervals shorter than 0.2 seconds were considered1.
Figure 5 illustrates a histogram of |η(tn+0.1)| for a bin-size

of 0.1. The figure shows that the SoD strategy is not able to
satisfy the observer’s goal, i.e., uphold a 0.2 error bound within
0.1 seconds of the impulse disturbance. This aspect is due to
the fact that one cannot make any guarantees on the estimation
error when SoD is employed as the amplitude of the impulse
could become unbounded. For PS, which in theory does
guarantee an upper bound on the estimation error, simulations
showed that |η(tn + 0.1)| seldom exceeds the bound of 0.2.
This is most likely due to occasional situations where two
impulses succeed each other within 0.1 seconds (which has a
probability of 10%). As such, there is a probability of around
10% that the estimation error with PS exeeds the value of
0.2 after 0.1 seconds from the impulse. A drawback of PS is
illustrated in Figure 6 indicating that PS triggered all events
directly after each other, which was also expected. This aspect
implies that communication resources at the instants of an
impulse are enourmous, otherwise one cannot sent measure-
ments directly after each other. The alternative SoD strategy
shows a more even distribution of events, though the total
number of events, i.e., the integral of the histogram, is much
more compared to PS. One can conclude that neither of the
two meets the estimation goal with acceptable communication
resources and a different sampling approach is thus desired.

B. Event triggering based on utility

The issue with SoD and PS is that they do not account for
any dynamics in the utility of new sensor measurements, i.e.,
how useful it would be to receive new measurements. Instead,

1Two consecutive events with an interval larger than 0.2 are assumed to
have been the caused by two different impulses. Since our concern is the
performance of the estimator per impulse, such intervals are not considered.
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Fig. 5. A histogram of the absolute estimation error at 0.1 seconds after an
impulse disturbance for the considered case of 1000 impulses.
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Fig. 6. A histogram of the time interval between two consecutive events that
were caused by the same impulse disturbance.

both strategies define a static triggering condition making
the importance of new measurements fixed. The example
studied here shows that even for a simplistic case of impulse
disturbances this importance is not fixed, for example, due to
uncertainty on when and how big the next impulse will be.
Hence, the importance of new measurement samples depends
on current estimation results, i.e., on previous disturbances,
and on the characteristics of the currently encountered dis-
turbance: amplitude and timing. Therefore, a dynamic event
sampling strategy is developed based on the current impor-
tance (or utility) of new measurements.

The dynamic triggering condition proposed here, called
Utility Sampling (US), takes the evolution of the sensor value
y(t) as expected by the estimator into account and introduces
a dynamic threshold ∆(t) set by the estimator.

Let us start with a characterization of y(t) as expected by the
estimator, which is derived from process model in (1) and (2).
The model points out that y(t) = cx(t), which further implies
that y(t) = cat−tex(te) = ea(t−te)cx(te) = ea(t−te)y(te). Hence,
after the e-th event, i.e., triggering y(te), the estimator expects
that the measurement will evolve as y(t) = ea(t−te)y(te), for a
given value of a. As such, where SoD triggers a new event
whenever y(t) is a ∆-distance away from y(te), one can now
define that a new event should be triggered whenever y(t) is a
∆-distance away from the expected sensor value ea(t−te)y(te),
thereby trigger a new event whenever |ea(t−te)y(te)−y(t)| > ∆.
Such a triggering condition implies that a new measure-
ment sample is important whenever the current sensor value
y(t) is outside a ∆-distance from the expected sensor value
ea(t−te)y(te). The next step is to introduce a dynamic threshold
∆(t) characterizing the importance of a new measurement in
relation to the goal of the estimator. Before deriving this
threshold, note that the triggering criteria of the next event
(sample) instant te+1 for US, yields

te+1 := min{t > te | |y(t)− ea(t−te)y(te)| ≥ ∆(t)}.

In order to derive a description of ∆(t), let us recall that
the goal is to reduce the estimation error up until 0.2 within
0.1 seconds of the n-th impulse disturbance occurring at a
time tn. The estimation error at any time t > tn depends on
the estimation error initially at the instant of the n-th event
η(tn), which can be perceived via η(tn) = x(tn)− x̂(tn) =
c−1y(tn)− x̂(tn). From Section VI-A one can then obtain that
the estimation error at the event instants evolves as η(te+1) =
κcaτeη(te)≤ κcη(te). As such, for an initial estimation error
of η(tn) = c−1y(tn)− x̂(tn), the estimation error at the e-th
event triggered after the n-th impulse satisfies η(te)≤ κe

c η(tn),
which further implies the following inequality

η(te)≤ κ
e
c
(
c−1y(tn)− x̂(tn)

)
.

The above equation can be used to compute the amount of
events e∗n necessary for reducing the estimation error to a value
less than 0.2, i.e., e∗n := {e ∈ Z+|κe

c (c
−1y(tn)− x̂(tn))< 0.2}.

Communication resources are the least in case these event
instants are evenly distributed within the 0.1 seconds after
the n-th event. In case the first event will be triggered at tn
for detecting the disturbance, this principle implies that a next
event should be triggered every τn = 0.1/(e∗n−1) seconds after
tn. In addition, one should also be prepared for new impulses
triggered within 0.1 seconds after the n-th impulse. Therefore,
the value of ∆ adopts the followed characterization:

∆(t) :=

{
(0.2(te−1 + τn)− t) if tn < t ≤ tn +1
0.2 if t > tn

The above characterization implies that ∆(t) turns negative at
carefully selected periodic instances in between tn and tn + 0.1
so to obtain an estimation error lower than 0.2 within 0.1
seconds after the n-th disturbance. Furthermore, the fact that
∆≤ 0.2 also implies that new impulses occurring shortly after
the n-th impulses will be detected and trigger an event. The
constant threshold ∆ = 0.2 for any tn +0.1 < t ≤ tn+1 implies
that after the estimator has returned to an equilibrium, i.e., after
tn + 0.1, the threshold ∆ = 0.2 will imply that new impulses
causing the estimation error to increase above the 0.2 will be
detected and trigger a next event.

Results of this event sampling strategy on the estimation
error at tn + 0.1 and on the sampling time in between two
consecutive events are depicted in Figure 5 and Figure 6,
respectively. They show that US is an event sampling approach
able to keep the estimation error within the 0.2 bounds after
0.1 seconds of the impulse disturbance for almost every
impulse. In addition, communication resources are relaxed
since the time in between two consecutive events is more
distributed within the 0.1 seconds instead of being triggered
directly after each other (as is the case with PS).

VIII. DISCUSSION ON EVENT VERSUS PERIODIC

So far, the analysis in this article has been based on a scalar
system with specific disturbances. A final comparison for a
realistic scenario is presented in this section. The scenario
considered is a 2D walk, where the state x consists of position



and speed in a plane and, similarly, acceleration is modeled as
2D Gaussian process noise. Further, the sensor measures the
2D position but is effected by additive Gaussian measurement
noise (unbiased and a covariance of 0.01). The Luenberger
observer is the selected estimator, where κ =

(
0.8 0.2 0 0
0 00.2 0.8

)>
Figure 7 depicts the results of 1000 simulated walks of 10

seconds each. The three sampling strategies employed were
’Send-on-Delta’ (SoD) with a threshold of 0.2, ’Predictive
Sampling’ (PS) with a threshold of 0.175 and ’Time-Periodic’
sampling (TP) with a sampling time of 0.33 seconds. The
results depicted are the number of sampling instant (for
TP always 31) and the total squared estimation error per
simulated walk. The figure shows that PS outperforms the
other sampling strategies in both number of samples as well
as estimation error. The other two strategies, i.e., SoD and TP,
have comparable estimation error results, though TP requires
a bit more samples (on average) to obtain its results.
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Fig. 7. The 1000 simulations divided in a histogram of the squared estimation
error (summed over the entire 10 seconds) and the amount of samples
triggered during those 10 seconds.

IX. CONCLUSIONS

The article presents a fundamental assessment on the re-
sponse of a Luenberger observer when new measurements are
triggered in line with an event sampling strategy. Conditions
for an asymptotically bounded estimation error of the Luen-
berger observer were derived. Further, two existing and one
novel event sampling strategy were presented, each having
a particular characterizing aspect, i.e., sensor history based,
sensor prediction based, utility based. Theoretical results were
obtained for the two existing sampling strategies by deriving
the number of events, their event instances and (asymptotic)
estimation errors when the observed process was effected by
either an impulse or a step disturbance. A simulation case
study revealed that the two existing sampling strategies could
not uphold the estimator’s goal of achieving particular error
bounds within a given time after the disturbance was detected.
Therefore, a third (novel) event strategy was developed starting
from the utility of new measurement samples for the esti-
mator’s goal. This third strategy outperformed both existing
strategies in communication resources, while having similar
(slightly improved) results in the estimation error.
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APPENDIX

A. Send-on-Delta: Impulse disturbance

For introduction, recall that the first event after the distur-
bance is triggered at t1 = limt↓td t to result in the estimation
error η(t1) = κcε (see Section VI-A). The next event of SoD
depends on the evolution of y(t) after the disturbance, which
follows y(t) = cx(t) = cεea(t−td) for all t ≥ td (see ((9)9)).
Notice that y(t1) = cε , after which y(t) will converge to 0.
Hence, as soon as y(t) dropped from cε to cε−∆, one obtains
|y(t)− y(te=1)| ≥ ∆ and thus te=2 is triggered. In general, the
e-th event is triggered when y(t) = cε− (e−1)∆, i.e.,

cεea(te−td) = cε− (e−1)∆,

⇒ te = td +
1
a

ln
(

cε− (e−1)∆
cε

)
. (16)

Hence, the inter-sampling time τe, for all e ∈ Z+, yields

τe = te+1− te =
1
a

ln
(

cε− (e)∆
cε− (e−1)∆

)
.

Then, equation (11) gives that the estimation error at te+1
follows η(te+1) = κcaτeη(te), which can be rewritten with
the above characterization of τe and aτe = eaτe into

η(te+1) = κc

(
cε−e∆

cε− (e−1)∆

)
η(te)

= (κc)
2
(

cε−e∆

cε− (e−2)∆

)
η(te−1)

= (κc)
e (1−e∆(cε)−1)

η(t1). (17)

We are now ready to conclude this analysis with the three
performance measures. From the fact that y(t1) = cε decays
to zero, the amount of samples triggered by SoD due to



the disturbance is α = bcε∆−1c. Further, as limt→∞ w(t) = 0,
Lemma IV.2 proves that η(t) is GAS and thus η(∞) = 0. The
value for tα is obtained by substituting e=α into (16) and the
last performance-measure, i.e., η(tα), results from substituting
η(t1) = κcε and α = e+1 into (17), i.e.,

η(tα) = (κc)
α

ε
(
1− (α−1)∆(cε)−1) .

B. Predictive Sampling: Impulse disturbance

For introduction, recall that the first event after the distur-
bance is triggered at t1 = limt↓td t to result in the estimation
error η(t1) = κcε (see (10)). The triggering condition of PS is
|cη(t)| ≥ ∆. Therefore, PS triggers “instantly” as many events
until |cη(tα)|< ∆, due to which τe ↓ 0 for all e and tα − td =
limτ↓0 τ . Equation (11) gives that errors are reduced with
η(te+1) = κcaτeη(te) = κca0η(te) = κcη(te) after each event
and since e(t1) =−κc one obtains that η(te+1) = (κc)

eη(t1) =
−(κc)

e+1. From this error equation one can thus derive the
following performance measures:

η(tα) =−(κc)
α and α = min{n ∈ Z≥1||c(κc)

n|< ∆}.

Similar as to SoD η(t) is GAS and thus η(∞) = 0.

C. Send-on-Delta: Step disturbance

Equation (12) gives that the sensor value starts to follow
y(t < td) = 0 and evolves as y(t ≥ td) = − εc

a (1− ea(t−td)).
Hence, after td the value of y(t) converges from 0 to − εc

a ,
implying that the amount of events triggered by SoD after td ,
i.e., the amount of ∆-levels between 0 and | εc

a |, yields

α =
⌊∣∣εc(a∆)−1∣∣⌋.

The e-th event is triggered when y(t) = e∆. Substituting the
above evolution of y(t) into this equality, gives the following
result for the event instants

− εc
a

(
1− ea(te−td)

)
= e∆ ⇒ te = td +

1
a

ln
(

1+
ae∆

εc

)
.

Hence, one can derive that tα − td = a−1 ln
(
1+ aα∆

εc

)
. The

characterization can further be used to construct the time in
between two consecutive events, i.e.,

τe =
1
a

(
ln
(

1+
a∆(e+1)

εc

)
− ln

(
1+

a∆e
εc

))
=

1
a

ln
(

εc+a∆(e+1)
εc+a∆e

)
.

and thus aτe = eaτe =
εc+a∆(e+1)

εc+a∆e
.

Substituting the above value for aτe into the characterization
of estimation error at events (see (14)), thus gives

η(te+1) = κc

(
aτeη(te)+

ε

a
(aτe −1)

)
= κc

(
εc+a∆(e+1)

εc+a∆e
η(te)+

ε∆

εc+a∆e

)
.

In case γ(n,m) := εc+a∆n
εc+a∆m and β (m) := ε∆

εc+a∆m , where n,m∈Z,
then η(te+1) can be rewritten as follows:

η(te+1) = κcγ(e+1,e)η(te)+κcβ (e),

= κ
2
c γ(e+1,e−1)η(te−1)+κ

2
c γ(e+1,e)β (e−1)+κcβ (e),

= κ
e
c γ(e+1,1)η(t1)+

e

∑
m=1

κ
e−m+1
c γ(e+1,m+1)β (m). (18)

At t1 the Luenbergerer observer receives the first measurement
after initialization y(t1) = ∆, due to which x(t1) = c−1∆. The
estimation update in (3), with x(0) = x̂(0) = 0, then gives
x̂(t1) = at1 x̂(0)+κ

(
y(t1)− cat1 x̂(0)

)
= κ∆ and thus η(t1) =

κc∆c−1∆. Combining this result with ((18)) and α = e+ 1,
gives the estimation error at the last event, i.e.,

η(tα) = κ
α
c c−1

∆γ(α,1)+
α−1

∑
m=1

κ
α−m
c γ(α,m+1)β (m).

After tα no new event will be triggered, due to which the
Luenbergerer observer keeps on predicting the state implying
that η(t) after tα evolves as follows:

η(t > tα) = at−tα η(tα)+
ε

a
(at−tα −1) ,

as lim
t→∞

at−tα = 0 ⇒ η(∞) = lim
t→∞

η(t) =−εa−1.

D. Predictive Sampling: Step disturbance

In case PS is used, triggering new events depends on the
estimation error of the local observer. Based on the results
presented in (14), one can conclude that the value of this
local estimation error η(t) tends to converge to −εa−1 after
each. However, since |−εa−1|> |∆c−1|, the PS-strategy keeps
on triggering new events whenever η(t) > |∆c−1|. As such,
the estimation error will never converge to −εa−1 but will
remain bounded by |∆c−1| and thus the amount of events is
unbounded, i.e., α = ∞. This further implies that there is no
last event instant, i.e., tα − td → ∞ and η(tα) does not exists.

An interesting observation is that PS will result in a trigger-
ing mechanism with a fixed inter-sampling time. To analyze
its value, first notice that limt↑te+1 η(t) = |∆c−1| and thus
η(te+1) = κc|∆c−1|, for all e∈Z+. Substituting this result into
(14), gives that after the eth event η(t) evolves as follows:

η(t) = at−teκc|∆c−1|+ εa−1 (at−te −1) , ∀te < t < te+1.

Substituting the above result in the fact limt↑te+1 η(t) = |∆c−1|,
gives that limt↑te+1 at−teκc|∆c−1|+ ε

a (at−te −1) = |∆c−1|. This
result can further be used for finding the inter-sampling time
τs = te+1− te, since τs = limt↑te+1 t− te, i.e.,

aτsκc|∆c−1|+ εa−1 (aτs −1) = |∆c−1|,

⇒ aτs =
|∆c−1|+ εa−1

κc|∆c−1|+ εa−1

⇒ τs =
1
a

ln
(
|∆c−1|+ εa−1

κc|∆c−1|+ εa−1

)
.

Note that κc|∆c−1| < |∆c−1| implies that |∆c−1|+εa−1

κc|∆c−1|+εa−1 < 1,
which together with a < 0 gives that τs > 0.


