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Abstract—Distributed Kalman filtering aims at optimizing an
estimate at a fusion center based on information that is gathered
in a sensor network. Recently, an exact solution based on local
estimation tracks has been proposed and an extension to cope
with packet losses has been derived. In this contribution, we
generalize both algorithms to packet delays. The key idea is
to introduce augmented measurement vectors in the sensors
that permit the optimization of local filter gains according to
time-dependent measurement capabilities at the fusion center.
In the most general form, the algorithm provides optimized
estimates in sensor networks with packets delays and losses. The
precision depends on the actual arrival patterns, and the results
correspond to those of the centralized Kalman filter when specific
assumptions about the measurement capability are satisfied.

Keywords—Kalman Filtering, Target Tracking, Distributed Es-
timation.

I. INTRODUCTION

In an increasingly interconnected world, the distributed
collection and processing of information finds its way in more
and more domains, ranging from military applications such as
surveillance systems and target tracking to the decomposition
of query operations in data centers.

Information is often noisy and must be processed by
filter algorithms. Although density estimators such as particle
filters [1], have been derived and applied to specific, often
low-dimensional systems, the basis for current algorithms is
still provided by simple linear approaches and, in particular,
the Kalman filter (KF) [2]. Due to its flexibility, computational
efficiency, and ease of application, the KF and its modifications
are used in small mobile devices [3] as well as in huge data
centers (e.g., for climate prediction [4]).

Distributing the calculation of a centralized KF to several
(sensor) nodes carries additional challenges due to limited
communication and knowledge. Not only is it necessary to
process locally sensed measurements at the sensors without
data from other sensors, but quite often also without access to
the models and processing matrices at remote nodes. However,
as measurements are recursively combined into tracks, local
estimates contain all information provided by the corresponding
sensing device up to the current time step.

A different approach is to transmit measurements instead
of estimates. The naı̈ve solution is to separately send all
measurements (and the corresponding measurement models)
from each sensor to the fusion center, which then calculates
centralized KF gains for the processing of the received
measurements. Apparently, this processing is more susceptible
to packet losses than decomposition techniques as information
is not re-sent in every time step. Still, a lot of research has been
carried out in this regard for communication networks with
stochastic properties [5]. For example, optimal data independent
gains have been derived [6].

In the area of track-to-track fusion, techniques to quantify
correlations [7] and to optimally fuse two [8] or several
estimates [9], [10] have been derived when arbitrary estimators,
e.g., KFs, are applied at the sensors. Unfortunately, the
distributed calculation of correlations is challenging, taken
by itself [11], and thus, approximate fusion methods [12]
and fusion algorithms under unknown correlations have been
proposed [13].

A holistic view on sensor networks with a fusion center
has been taken in [14], [15] by exclusively considering the
precision of the estimate at the fusion center while neglecting
the quality of local estimates at the sensors. This has been
realized by a decomposition of the centralized KF for different
noise term characteristics.

Recently, the distributed KF (DKF) has been proposed as
an optimal, i.e., centralized KF equivalent, estimator for sensor
networks in the context of Gaussian distributions [16], [17].
The key idea is to optimize the local processing at the sensors
according the centralized KF and to recover the optimal estimate
from locally obtained vectors at the fusion node. As the DKF
is only applicable when the communication is deterministic
and all sensors have full access to the measurement models of
remote nodes, the hypothesizing KF (HKF) has been derived
to bypass these limitations [18].

In this paper, we aim at reconstructing the centralized
KF results based on recursively obtained variables at the
sensors. We generalize the DKF and the HKF by deriving
formulas for the optimal inclusion of packets that are subject to
communication delays. The proposed technique is based on a



mixed processing at the sensors, consisting of a recursive part
and an augmentation part that allows for filtering with optimal
gains in all time steps. While the computational effort for the
proposed approach increases proportionally to the maximum
packet delay in the network, the communication effort is the
same as for the basic versions of distributed and hypothesizing
KF.

II. PROBLEM FORMULATION

We consider a sensor network S consisting of a dedicated
fusion center and sensors s ∈ S that observe a common
phenomenon at discrete time steps. The packet transmis-
sions from sensors to the fusion center are realized in a
communication-delayed network, e.g., by means of multihop
communication. The sensors in S are clustered according to
communication delays τ ∈ {0, . . . , τ} into sets S0, . . . ,Sτ
with S = S0 ∪ · · · ∪ Sτ . For example, in the multihop sensor
network depicted in Fig. 1, the sensor specific communication
delays are given by the number of hops to the fusion center.

Let the system and measurement models for s ∈ S

xk+1 =Axk + wk and (1)
zsk =Hs

kxk + vsk , (2)

be linear with zero-mean additive noise terms wk and vsl ,
respectively. The noise terms are assumed to be independent
of each other with covariances E{wk(wk)

>} = Qk and
E{vsk(vsk)>} = Rs

k.

In the considered system, information is obtained by means
of sensor measurements. Hence, we collect all information
that is available to the fusion center at time step k in Ik =
{zst | s ∈ S, t ≤ k − τs}. Let Tk−t = S0 ∪ · · · ∪ Sk−t ⊆ S
denote the set of sensors that have made the measurements of
time step t available by time step k, i.e., the sensors s ∈ S
with τs ≤ k − t.

The objective is to minimize the MSE of the estimate
at the fusion node in each time step based on recursively
calculated data at the sensors. The main challenge is to consider
communication delays that impede the application of the
DKF [17] and the HKF [18].

III. DKF FOR TIME-DELAYED INFORMATION

In this section, we assume the delays to be deterministic,
neglect packet losses, and require global model knowledge, i.e.,
all sensors have full knowledge about measurement models
and uncertainties of all other sensors in the network. All of
these assumptions are relaxed in Sec. IV.

In the first instance, we derive the centralized KF with
delayed measurement processing and then, propose an approach
to decompose the calculation. The centralized KF calculates
the optimal estimate E{xk | Ik} in alternating prediction and
filtering steps. The prediction of estimate x̂t and covariance
Pt over one time step is given by

x̂t+1 =Ax̂t and (3)
Pt+1 =APtA + Qt . (4)

τ = τ τ = τ − 1 τ = 1

Figure 1. An arbitrary sensor network with sensor nodes (circles, green),
fusion center (rounded rectangle, blue), and communications paths (arrows).
At the bottom, a schematic clustering according to communication delays from
sensors to the fusion center is given.

In the information form of the KF [19], measurements are
filtered by

x̂t|t =Ltx̂t +
∑

s∈Tk−t

Ks
tz
s
t with (5)

(Pt|t)
−1

=(Pt)
−1

+ (Pz
t|k)
−1

, (6)

where

Lt =Pt|t(Pt)
−1

, (7)

Ks
t =Pt|t(H

s
t )
>(Rs

t )
−1

, and (8)

(Pz
t|k)
−1

=
∑

s∈Tk−t

(Hs
t )
>(Rs

t )
−1

Hs
t . (9)

We have chosen to present the KF equations in the
information form as this allows an easy integration of multiple
measurements at one time step. Note that the gains Lt and Ks

t

implicitly depend on the measurement capabilities (Pz
t|k)
−1

in (9), t ≤ k, and therefore on which measurements are
available to the fusion center at time step k.

The following observation follows directly from the com-
munication structure

Observation 1 Let t < k − τ , then Tk−t = Tk−t−1 and thus,
the gains Lt, Ks

t , and the estimates x̂t with t ≤ k − τ do not
change in time steps k′ ≥ k.

Following Observation 1, we propose a mixed algorithm
consisting of a recursive and a state augmentation part. Informa-
tion up to time step k−τ is stored in the estimate (x̂k−τ , Pk−τ ).
The gains (7) and (8) for t > k − τ ensue from Pk−τ with
(Pz

k−τ+1|k)
−1

, . . . , (Pz
k|k)

−1

. In order to highlight temporary
quantities, which are discarded at every time step, we use a
tilde and a reference time step k, i.e., P̃k

t , L̃kt , and K̃s
t for

t > k − τ . Taken together, the covariances depicted in Tab. I
must be calculated at every time step.



k Pk
k−τ P̃k

k−τ+1 P̃k
k−τ+2 . . . / /

k+1 / Pk+1
k−τ+1 P̃k+1

k−τ+2 . . . P̃k+1
k+1 /

k+2 / / Pk+2
k−τ+2 . . . P̃k+2

k+1 P̃k+2
k+2

Table I. COVARIANCES THAT ARE NEEDED FOR THE GAIN
CALCULATION AT TIME STEPS k TO k + 2.

We can “roll out” the recursive calculations in (3) and (5)
for t > k− τ and obtain a linear combination of measurements
and the estimate x̂k−τ

E{xk | Ik} =
k∑

t=k−τ+1

∑
s∈Tk−t

Ñs
t|kz

s
t + Ñs

k−τ |kx̂k−τ (10)

with

Ñs
t|k =

{
AL̃k|k · · ·AL̃t+1|kAK̃s

t|k , t > k − τ
AL̃k|k · · ·AL̃t+1|kA , t = k − τ . (11)

Unfortunately, due to the delayed inclusion of measurements,
the temporary covariances, in general, do not transfer to the
covariances in subsequent time steps. For example, P̃k

k−τ+1

differs from Pk+1
k−τ+1 as the latter one is obtained by means of

the measurement capability (Pz
k−τ+1|k+1)

−1 ≥ (Pz
k−τ+1|k)

−1

.
However, when the communication network and the system
models are time-invariant, the covariance Pk−τ converges to
a steady-state matrix, the measurement capabilities (Pz

t|k)
−1

exclusively depend on the difference between t and k, and thus,
the gains (7), (8), and (11) are constants with respect to k − t.

It is worth mentioning that even if the gains K̃s
t|k converge

to steady-state values, it holds in general K̃s
t1|k 6= K̃s

t2|k
and K̃s

t1|k+1(AK̃s
t1|k)

−1 6= K̃s
t2|k+1(AK̃s

t2|k)
−1

for t1 6= t2,
t1, t2 ∈ {t + 1, . . . , k}, which, in turn, prevents a recursive
processing of measurements.

Decomposition of centralized KF Equations

In the following, the derived formulas are decomposed
in order to allow a distributed processing of the estimate.
We use the same technique as in [17] and define the local
processing based on centralized KF equations. Remember that
the maximum packet delay in the sensor network is denoted
by τ . We introduce a local quantity x̂sk−τ at each sensor that
recursively comprises measurements up to time step k − τ .
For t ≤ k − τ , the gains Lt and Ks

t are obtained as in the
centralized KF and the quantity x̂sk−τ is recursively calculated
according to

x̂s0 =
1

|S| x̂0 , (12)

x̂st+1 =Ax̂st , and (13)
x̂st|t =Ltx̂

s
t + Ks

tz
s
t . (14)

In general, Lt 6= I−Ks
tH

s
t and thus, x̂s is a biased estimate.

However, comparing it to x̂k−τ in (3) and (5) reveals the
property

x̂k−τ =
∑
s∈S

x̂sk−τ , (15)

i.e., we are able to reconstruct the centralized KF estimate
of time step k − τ based on variables that have been gained
recursively at the sensors. An initialization based on local
estimates or measurements instead of a decomposition of the
centralized estimate is feasible as long as (15) is ensured
(c.f. [20]).

For time steps t > k − τ , temporary gains (7) and (8)
are utilized that are optimized according to the measurement
capability at the fusion node. As packets from sensor s are
affected by a communication delay of τs, information that
will be available at the fusion center at time step k must be
transmitted by time step k − τs already. Hence, we define
temporary estimates ỹs

k
reflecting the information of time step

k − τs that will be available to the fusion center in time step
k as

ỹs
k
= Ñs

τ−1:τs|k z
s
τ−1:τs|k + Ns

k−τ |kx̂
s
k−τ (16)

with

Ñs
τ−1:τs|k =

(
Ñs
k−τ+1|k . . . Ñs

k−τs|k

)
and

zsτ−1:τs|k =
(
(zsk−τ+1)

> . . . (zsk−τs)
>)> .

(17)

Note that ỹs
k

is calculated at node s in time step k − τs by
means of gains Ñs

τ−1:τs|k that depend on covariances and the
communication of time steps t > k − τs. Again, the proposed
method is a decomposition of the centralized KF equations.
We obtain

x̂k = E{xk | Ik} =
∑
s∈S

ỹs
k

(18)

as the combination rule at the fusion center.

The proposed technique for the distributed calculation of
the centralized KF estimate in the presence of deterministic
communication delays is summarized in Alg. 1. For τ = 0,
the equations simplify to the recursive processing in (13)
and (14) with fusion method (15) and hence, are the same as the
processing of the DKF [17]. For τ > 0, a state augmentation
technique (17) is utilized to facilitate a remote processing of
measurements that is adapted to the measurement capability at
the fusion node.

Alternatively to the proposed processing, it is conceivable
to calculate ỹs

k−τs
, i.e., estimates of time step k− τs instead of

k at the sensors. The forward projection from time step k− τs
to k is then done at the fusion center by multiplying ỹs

k−τs
with AL̃k|k · · ·AL̃k−τs+1|k, t > k−τ (c.f. (11)). The estimate
yielded by this technique still corresponds to the centralized KF
result, but instead of repeating the computations at all sensors,
the forward projection gains are obtained only once at the
fusion node.

For both variants, the computational effort depends on the
communication delay between sensor and fusion node. More
precisely, at node s, the number of gains Ñs

t|k calculated per



Algorithm 1 Sensor Processing

1: Initialize x̂s0 with (12)
2: for k = 0 ; . . . ; k = k + 1 do
3: Filter Ps

k−τ , x̂sk−τ with (6) and (14)
4: Add new measurement to zsτ :τs|k and remove zsk−τ

from list (if k − τ ≥ 0)
5: Set P̃s

k−τ = Ps
k−τ

6: for τ = τ − 1 ; τ ≥ 0 ; τ = τ − 1 do
7: Process P̃s

k−τ+1 with (4) and (6)
8: Calculate L̃k−τ with (7)
9: Calculate K̃s

k−τ with (8) (if τ ≥ τs)
10: end for
11: Calculate Ñs

τ−1:τs|k from L̃t, K̃s
t with (17)

12: Calculate ỹs
k

with (16) and transmit it to the fusion
center

13: Predict Ps
k−τ , x̂sk−τ with (3), (4), and (13)

14: end for

time step and the number of measurements stored is τ−τs each.
Indeed, independently from the computations, only the vector
ỹs
k

with dim{ỹs
k
} = dim{x} from (16) must be transmitted to

the fusion center.

To the authors’ knowledge, the only technique available
in literature to reconstruct the centralized KF result for the
considered system in the presence of packet delays is to utilize
a naı̈ve measurement transmission technique and to employ a
KF at the fusion node. The proposed algorithm is superior to
this approach in the following scenarios:

• The computational power of the fusion center does not
scale with the number of sensors in the network. For
the proposed technique, the only operation necessary
at the fusion node is to sum up the received vectors.
As this is an aggregation operation, it can be done in-
network when the communication structure is modeled
as a tree.

• The measurement space is larger than the state space.
As only the vector ỹs

k
(dimension equals that of the

state) is transmitted to the fusion center, the data
amount that must be transmitted is reduced at the
costs of pre-processing at the sensors.

• An estimate at the fusion center is not needed in every
sensing cycle. As all past measurements of a sensor
are comprised in ỹs

k
, it is not necessary to transmit

measured values separately, but instead establish a
communication rarely, e.g., each 100th time step only,
and communicate all information in one vector then.

As measurements from several time steps are bundled
in one vector, the last-mentioned aspect is, in particular,
relevant for energy constrained sensor networks that suffer
from expensive communication and for sensor networks with
a high measurement sampling rate.

For the considered system with global model knowledge
and deterministic communication, the proposed algorithm is
optimal. However, it has been argued that the assumptions
about packet losses and global model knowledge are limiting
and quite often not realistic [21].

Distributed KF → Hypothesizing KF
↓ ↓

Distributed KF
with time delays

→ Hypothesizing KF
with time delays

Table II. CLASSIFICATION OF PROPOSED ALGORITHMS. ARROWS
INDICATE GENERALIZATIONS.

IV. HKF FOR TIME-DELAYED INFORMATION

The objective pursued in this section is to relax the
assumptions from Sec. III while maintaining a high precision
of the estimate at the fusion center. For this purpose, the
HKF [18] is generalized. Instead of relying on guaranteed
packet arrival patterns, the main idea of the HKF is to substitute
the measurement capability (Pz

t|k)
−1

(9) and provide techniques
to compensate for the bias of the estimate that is induced by
a difference between substitution and underlying quantity. In
the following, we expand the HKF to the considered scenario
with packet delays. We obtain a simple relation between the
DKF, the HKF, and the proposed techniques that is depicted
in Tab. II.

The main difference between the HKF versus the DKF
is that the gains (7) and (8) are not obtained with the
true measurement capabilities (Pz

t|k)
−1 that depend on the

measurement models of the sensors and the packet delays
and losses in the sensor network, but based on hypotheses
(Cz

k−t)
−1 ≈ (Pz

t|k)
−1 that aim at approximating the underlying

true model as best as possible. Apart from replacing (Pz
t|k)
−1

by (Cz
k−t)

−1, the processing of estimates and covariances is
the same as in Sec. III.

However, the substitution of the true measurement capability
has mainly two consequences. First, the covariance Pk does
not represent the true MSE matrix of the estimate, but is an
auxiliary variable to obtain optimized filter gains. Second, the
fused estimate (18) is biased when the hypotheses do not match
the true measurement capabilities. For this reason, debiasing
matrices ∆s

k are maintained in addition to local estimates that
allow the reconstruction of unbiased estimates according to

E{(∆s
k)
−1

ỹs
k
} = E{xk} . (19)

In [18], the processing of multiplicative debiasing matrices
that satisfy (19) has been derived for initialization, prediction,
filtering, and fusion. In the following, we adapt these methods
to networks with a delayed communication.

Assume that the processing of Sec. III is applied with
hypotheses (Cz

τ )
−1

, τ ∈ {0, . . . , τ}, as substitutions for
the measurement capabilities. Then, in order to guarantee
property (19), the inverse of the debiasing matrix must reverse
the initialization operation. The initialization from (12) is for
example reversed with

∆s
0 =

1

|S|I . (20)

Property (19) specifies prediction and filtering operations as
well. Taking into account that ỹs

k
is obtained with gains Lst

and Ks
t from (7) and (8) (with (Cz

k−t)
−1 instead of (Pz

t|k)
−1),



we apply the derivation of the debiasing matrix from [18] and
obtain

∆s
t+1 =A∆s

t (A)
−1

and (21)
∆s
t|t =Lst∆

s
t + Ks

tH
s
t . (22)

As the gains for t > k − τ change with temporary covariance
matrices (c.f. Sec. III), the debiasing matrices consist of
recursively obtained and of augmented parts as well. We
obtain the temporary debiasing matrix for ỹs

k
in matrix-vector

representation as

∆s
k = Ns

k−τ |k∆
s
k−τ (A)−τ +

k−τs∑
t=k−τ+1

Ñs
t|k(A)−(k−t) .

(23)

A summary of the debiasing processing is separately given in
Alg. 2. Indeed, the processing of debiasing matrices is best
integrated in the processing cycle of Alg. 1.

Algorithm 2 Processing of Debias Matrix

1: Initialize ∆s
0 with (20)

2: for k = 0 ; . . . ; k = k + 1 do
3: Filter ∆s

k−τ with (22)
4: Calculate ∆s

k with (23) and transmit it to fusion center
5: Predict ∆s

k−τ with (21)
6: end for

In the fusion center, the sensor specific vectors ỹs
k

are
combined. Note that due to packet losses it is possible that
only a subset of sensors S ′ ⊆ S has provided local quantities.

Yet, the representation of the debiasing matrix in the
information space allows the fusion

ỹS
′

k
=
∑
s∈S′

ỹs
k

and (24)

∆S
′

t =
∑
s∈S′

∆s
t , (25)

with x̂k = (∆S
′

k )
−1

ỹS
′

k
. It directly follows from

(∆S
′

k )
−1∑
s∈S′

ỹs
k
−xk = (∆S

′

k )
−1
( ∑
s∈S′

ỹs
k
−
∑
s∈S′

∆s
kxk

)
= (∆S

′

k )
−1 ∑

s∈S′
∆s
k

(
(∆s

k)
−1

ỹs
k
− xk

)
,

(26)

that the difference between fused estimate (24) and the
underlying true state xk diminishes in expectation when (19)
holds for s ∈ S ′. Therefore, we have E{x̂k} = E{xk}.

Principally, there exist two approaches for handling missing
packets in the considered framework. The naı̈ve technique is to
ignore past transmissions and to derive an estimate according
to (24) and (25). Indeed, in this case, measurement information
from sensors s ∈ S\S ′ is not included in the fused estimate
although previous transmissions might have been successful.

However, as shown in (26), the only requirement to obtain
an unbiased estimate at the fusion center is to guarantee local
unbiasedness (19). Therefore, outdated estimates ỹs

t
can be

projected forward at the fusion center by means of the simple
formulas

ỹs
t+1

= Aỹs
t

and ∆s
t+1 = A∆s

t (A)
−1

,

and can then be included in the fusion process (24) and (25).

As discussed in Sec. III, for time-invariant models, the co-
variances and gains converge to steady-state values. Obviously,
the same holds for ∆s

k as it is a function of covariances and
gains so that the computational effort is significantly reduced
as well.

For the proposed extension of the HKF, we can go even one
step further. In fact, the proposed framework provides flexible
techniques to optimize filter gains at the local sensors based
on expected sensor network capabilities in communication
environments that are subject to packet delays and losses.
As long as the local debiasing matrix satisfy (19), unbiased
estimates that are optimized according to centralized KF
equations are obtained with help of the fusion algorithm (24)
and (25).

In particular, it is feasible to derive constant gains prior
to application and to use them from the beginning, which
limits the necessary computations in each time step to the
matrix operations in (13) and (14). Although such processing
is suboptimal during the initial period of an estimation process
(with time-varying covariances), long-term applications that
tend to settle to a steady-state are well covered.

Moreover, the results of [18], [20] transfer to the gen-
eralization derived in this paper. Among other things, the
derivation of a MSE matrix bound [18] and the initialization
from measurements [20] can be applied directly. In particular,
it is worth mentioning that the estimate at the fusion center
corresponds to the optimal estimate E{xk | Ik} if and only if
the estimated measurement capabilities (Cz

τ )
−1

have met the
underlying true values (Py

t|k)
−1

, τ = k−t. Otherwise, the preci-
sion depends nonlinearly on the difference between assumption
and underlying truth of the measurement capabilities.

The application of the extension of the HKF is advantageous
in the same scenarios that have been discussed in Sec. III.
Additionally, estimators with recursive processing at the sensors
comprise data from past transmissions in subsequent packets
and thus information cannot be lost but only arrive delayed at
the fusion center. As the algorithms from Sec. III and Sec. IV
employ this local processing and the proposed extension of the
HKF is capable of handling packet losses, it has a conceptual
benefit versus measurement processing techniques.

V. EVALUATION

As mentioned above, the extension of the DKF provides
optimal results and thus, does not have to be evaluated. However,
the algorithm from Sec. IV can be applied in a variety of
scenarios and provides suboptimal results when the assumptions
about the measurement capability do not meet the underlying
true models. An examination of the performance of the HKF
that is not subject to packet delays is given in [18], [21].

We focus on the impact of packet delays on the estimation
performance in the following. Consider a white-noise jerk
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Figure 2. The relative MSE of estimators with time horizons τ = 0 to τ = 3
relative to the centralized Kalman filter results in 500 Monte Carlo runs.

model where the acceleration is given by a continuous-time
white noise term [22] with time-discrete equivalent

xk+1 =

1 t t2/2
0 1 t
0 0 1

xk + wt ,

where

wt ∼ N (0, p ·Qt) with Qt =

t5/20 t4/8 t3/6
t4/8 t3/3 t2/2
t3/6 t2/2 t

 .

We set the time interval to t = 0.1 and the power spectral
density to p = 10. Let the network consist of 10 identical
sensors that observe the acceleration according to

zsk = (0 0 1)xk + vsk with vsk ∼ N (0, 10) .

The communication delays of the sensors vary between 0 and
4 time steps with two sensors each belonging to one delay
cluster. Therefore, the measurement capabilities are given by
(Pz

k−τ |k)
−1

= 2 · (τ + 1)(0 0 1)> 1
10 (0 0 1), τ ∈ {0, . . . , 4},

k − τ ≥ 0.

In order to determine the impact of the proposed packet de-
lay processing on the estimation performance, we consider dif-
ferent delay horizons in the optimization of the algorithm from
Sec. IV. More precisely, we optimize the local estimates with
the correct measurement capabilities (Cz

τ )
−1

= (Pz
k−τ |k)

−1

,
τ ∈ {0, . . . , τ}, but vary the considered time horizon from
τ = 0 (standard HKF without delay processing) to τ = 4
(exact) so that time horizons τ ∈ {0, . . . , 3} yield suboptimal
results.

The MSEs relative to the MSE of the optimal centralized
KF of 500 Monte Carlo runs are given in Fig. 2. For τ = 4,
the algorithm from Sec. IV equals the centralized KF and thus,
provides optimal results. As depicted in Fig. 2, the performance
of the other estimators is suboptimal and deteriorates with the
considered optimization horizon. For τ = 0, i.e., the regular
HKF [18], the MSE at time step 19 is almost three times

as big as for the optimal approach. The more time steps are
considered in the optimization, the smaller is the deterioration.
For example, for τ = 3, the MSE at time step 19 is only 1.5%
higher than for τ = 4.

Note that independently of the considered time horizon,
the same information is processed and communicated to the
fusion center. The only difference lies in the optimization of
the filter gains that is done according to different measurement
capabilities. Obviously, even for this simple scenario, the
optimization has a distinct impact on the estimation perfor-
mance. In particular, the application of local KFs with a
subsequent fusion resembles the algorithm without packet delay
processing optimized according to local measurement models
(Hs

t )
>(Rs

t )
−1

Hs
t , s ∈ S. As local measurement models are

poor approximations of the sensor network capability (9), the
local KF processing yields even worse results than τ = 0.

While it remains to evaluate the approaches extensively, we
demonstrated by means of a simple scenario that the extension
for delayed packet processing has a significant impact on the
estimation performance.

VI. CONCLUSION

We proposed extensions to distributed estimation algorithms
for the optimal processing of information in sensor networks
in the presence of packet delays. In the first instance, we
generalized the distributed Kalman filter and showed that the
centralized Kalman filter estimate is obtained at the fusion
center based on recursively obtained quantities from the
sensors. As the distributed Kalman filter relies on global model
knowledge and deterministic communication, we also derived
an extension of the hypothesizing Kalman filter that is capable
of providing unbiased estimates with up to optimal precision
for arbitrary sensor networks.

Hence, in the most general form, the proposed algorithm is
able to cope with packet delays and losses without knowledge
about models of remote sensors. In particular, in scenarios
with a reliable description of the (stochastic) communication
attributes, the application of the proposed schemes significantly
improves the estimation performance compared to local Kalman
filters or standard track-to-track fusion algorithms.
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