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Abstract—For systems suffering from different types of un-
certainties, finding criteria for validating measurements can be
challenging. In this paper, we regard both stochastic Gaussian
noise with full or imprecise knowledge about correlations and
unknown but bounded errors. The validation problems arising
in the individual and combined cases are illustrated to convey
different perspectives on the proposed conditions. Furthermore,
hints are provided for the algorithmic implementation of the
validation tests. Particular focus is put on ensuring a predefined
lower bound for the probability of correctly classifying valid data.

Index Terms—data validation, imprecisely known correlations,
set-membership uncertainties, unknown but bounded errors

I. INTRODUCTION

In data validation, we are concerned with deciding
whether new data, usually in form of a measurement, appears to
be valid under specified criteria. Commonly, the main concern
is if the estimate stemming from the new data is sufficiently
compatible with the current estimate from a statistical point of
view. For example, in the case of Gaussian distributions and an
underlying linear relationship, the compatibility can be tested
using the Mahalanobis distance [1].

More generally, we can employ hypotheses tests [2] to
perform the judgment. A hypothesis test is a prespecified rule
determining when to accept or reject hypotheses (statements
about distributions) based on the data observed. Our null
hypothesis is that the measurement is valid and thus compatible
with our current estimate. Our aim throughout the paper is to
ensure that less than α, e.g. 5%, of actually compatible estimates
are expected to result in rejection of the measurement. As
common in hypothesis testing, we refer to α as the type I error
probability.

In the easiest case, we can express our hypothesis as a
fully specified distribution. We can then divide its possible
realizations into an acceptance and a rejection region. As
the acceptance region, we select a subset of realizations that
covers (at least) 1− α of probability mass when conditioned
on the null hypotheses. However, even in the linear case with
Gaussian noise, the null hypothesis cannot be formulated as
a fully specified distributions if the correlations are not fully
known. In this case, the hypothesis has to respect multiple
possible covariances as possible parameters. The approach
taken in [3] generalizes the aforementioned test using the
Mahalanobis distance by classifying measurements as valid
if they appear to be compatible under any of the correlations
that are considered to be possible. If we regard the resulting
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(a) Multiple scaled covariance ellip-
soids for a bivariate Gaussian distri-
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(b) Ellipsoidal set containing multi-
ple values, one of which is the true
parameter x̃.

Figure 1. Comparison of stochastic and set-membership uncertainty.

acceptance region, this criterion tests for containment in the
union of the individual acceptance regions. Tests constructed
this way are known in Neyman–Pearson hypothesis testing
as intersection–union tests [2]. While significantly differing
tests could be thought of, this test successfully ensures that we
attain a type I error probability of less than α for our composite
hypothesis [4].

Aside from requiring knowledge about correlations, an-
other prerequisite for formulating a hypothesis is obviously
basic knowledge about the possible distributions of the er-
rors. For errors present in a variety of sensors (e.g., image
noise [5]), stochastic models can be built that are suitable for
approximating the noise behavior under certain circumstances.

However, there are perturbations for which assuming a
distribution may not make sense. Due to engineering tolerances
or inaccurate calibration, devices can suffer from constant
biases, whose bounds may be known from the devices’
specifications. A variable source of error, which is bounded but
generally no distribution is known of, is noise stemming from
discretization. In these and other cases, unknown but bounded
errors cause us to consider several elements, intervals, or other
infinite sets of possible values instead of an actual distribution.
Therefore, we also refer to them as set-membership errors.
Evidently, it is also possible that the uncertainties split into two
parts: one of which we know the distribution of and one of
which we can only tell the set the true parameter is a member
of. We have illustrated the difference between the two types of
uncertainties by putting a series of scaled covariance ellipsoids
of the same distribution side by side to an ellipsoidal set of
similar shape in Fig. 1.



In the process of this paper, we lay out the challenges for
data validation in the presence of the aforementioned uncertain-
ties and suggest validity tests with a type I error probability of
less than α when stochastic and set-membership uncertainties
and are present, additionally considering imprecisely known
correlations of the former. The concepts can be regarded in a
set of densities framework that is already in use for several
filtering algorithms [6], [7], [8], with extensions available in
the ellipsoidal case [9], [10]. Due to useful properties and
prevalence in filtering algorithms, only ellipsoidal sets are
covered in this paper.

The next section deals with inspecting the various cases and
visualizes their challenges. Methods for numerically solving
the data validation problems are addressed in section III. After
presenting an example and results of experiments for the data
validation for both stochastic and set-membership uncertainties,
we conclude the paper in the last section with a summary and
an outlook.

II. EXPLANATION OF THE VARIOUS CASES

In this section, we walk through the various cases, visually
explaining the difficulties arising. First, we begin with the case
of known Gaussian distributions and known correlations. Then,
we proceed with the validation in the presence of unknown but
bounded errors. The third subsection deals with Gaussian noise
and imprecisely known correlations. In the fourth and fifth
subsection, the set-membership uncertainties are first combined
with Gaussian noise under known and then with Gaussian noise
under imprecisely known correlations.

All sets used for the set-membership uncertainties are as-
sumed to be ellipsoidal. E(q,Q) denotes the ellipsoid described
by the centroid q and the shape matrix Q. Please be aware that
multiple interpretations exist in the literature and we use the
definition

a ∈ E(q,Q)⇔ (a− q)TQ−1(a− q) ≤ 1 ,

which involves inverting the shape matrix. By underlining
constants or variables we indicate that they are usually vectors.

For testing the compatibility, we have to put two estimates
in relation. We assume two linear mappings Hx and Hy exist
that relate the true value of x, written as x̃ to the true value of
y, written as ỹ, in the form of

Hxx̃ = Hy ỹ .

We focus on criteria that ensure at least a probability of 1−α
for not committing a type I error. By keeping the acceptance
regions small, we can potentially reduce the probability of
misclassifying invalid measurements (type II error probability).
However, minimization of the type II error probability is not
attempted. In fact, as we leave the alternative hypothesis open to
be specified on a case-by-case basis, we are unable to determine
specific probabilities for type II errors.

A. Stochastic Error with Known Correlations Only

For Gaussian distributions, the acceptance regions yielding
a probability of exactly 1 − α for correctly classifying valid
data that contain only the observations most likely under
the null hypothesis are always scaled covariance ellipsoids.
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(a) Covariance ellipsoid of z.
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Hxx̂

e 1
→

e2 →
3 4 5 6 7

2

4

6

8

(b) Covariance ellipsoid drawn around
Hy ŷ.

Figure 2. Illustration of equivalent tests for the containment in the covariance
ellipsoid.

These bounds are well known and commonly used, such as
in the empirical rule. We call scaled covariance ellipsoids kC-
bounds for k ∈ R+ —k can be chosen to ensure a type I error
probability of less than α. This is slightly different from the
notation of the “g-sigma ellipsoid” used in [11], which involves
a similar parameter g in squared form.

For verifying the compatibility, we define the new random
variable (denoted by a bold letter)

z = Hxx−Hyy

and test if the current estimate ẑ, calculated from the individual
estimates x̂ and ŷ, is contained in the kC-bound of the estimator
that has zero mean and is distributed as z ∼ N (0,Cz). As the
correlations are known, Cz can be calculated exactly and the
condition, as illustrated in Fig. 2(a), becomes

ẑ = Hxx̂−Hy ŷ ∈ E(0, kCz) , (1)

yielding E(0, kCz) as our acceptance region.

Considering this definition, we can infer that another
intuitive condition shown in Fig. 2(b) can be used for validation
instead. The two estimates x̂ and ŷ are deemed compatible
if drawing the kCz-bound around Hxx̂ will encompass Hy ŷ
or, equivalently, drawing the kCz-bound around Hy ŷ contains
Hxx̂. In other words, we test if

Hxx̂ ∈ E(Hy ŷ, kCz) (2)

holds.

B. Set-membership Error Only

In so called Guaranteed State Estimation [12], [13], un-
known but bounded errors are dealt with. In this case, the
estimates form sets X and Y that satisfy x̃ ∈ X and ỹ ∈ Y
at each time step. The new estimate is usually calculated by
determining an intersection [14]. In this context, the current
estimate—often the set of possible true parameters—is often
referred to as the information, consistency, or feasibility domain
[13]. If both X and Y are valid, the intersection is never empty.
Crucially, if one or both of the sets are incorrect, meaning they
do not contain the respective true values, the intersection can
be empty. Performing an update step under this condition can
lead to the empty set being the nonsensical, new estimate.

By using data validation, we try to avoid the above problem.
In our case, we have two ellipsoids HxX and HyY (Fig. 3)



Figure 3. Transformed ellipsoids having common points.

with x̃ ∈ X and ỹ ∈ Y—if both are valid. As we consider any
pair (x, y) ∈ X × Y , we have to accept the measurement if

HxX ∩HyY 6= ∅ .
Otherwise, it is possible that (x̃, ỹ) ∈ X × Y , leading to the
rejection of a valid measurement. As the only property known
about a valid estimate is that it contains the real value, we
have no way to distinguish between a valid measurement and
an invalid measurement that results in a nonempty intersection.
However, we can safely reject all Y for which the intersection
is empty as we do not consider an additional stochastic error.

C. Stochastic Error with Imprecisely Known Correlations Only

When correlations are imprecisely known, there are usually
multiple possible covariance matrices Cz . If we call the set
of correlations that are allowed—based both on our imprecise
knowledge and on if they describe valid correlations—R, then
we get a family of covariances Cz(r) with r ∈ R. In order to
achieve a type I error probability of less than α, we demand
that the condition from subsection II-A is satisfied for at least
one of the possible correlations by determining if

∃r ∈ R : Hxx̂−Hy ŷ ∈ E(0, kCz(r))

holds. This condition is equivalent to

Hxx̂−Hy ŷ ∈
⋃
r∈R
E(0, kCz(r)) ,

which is basically testing for containment in the union of the
acceptance regions. The area resulting from taking the union
of multiple ellipsoids is demonstrated in Fig. 4(a) and is not
an ellipsoid in general. As testing for containment in the union
of these covariance ellipsoids is generally difficult, we take
another condition into consideration. In subsection III-C, we
introduce a family of ellipsoids with shape matrices V(κ)
whose intersection is equivalent to the union above, meaning⋃

r∈R
E(0, kCz(r)) =

⋂
κ

E(0, kV(κ)) . (3)

This allows us to perform the test in a different fashion using
the condition

Hxx̂−Hy ŷ ∈
⋂
κ

E(0, kV(κ)) ,

which is shown in Fig. 4(b).
Remark 1. The union of the acceptance regions may not be
the smallest acceptance region—it can actually be quite con-
servative [4]. In many cases, the probability of not committing
a type I error is strictly above 1− α for the above described
method. Imagine r̃ being the true (and known) correlations,
then the probability of not committing a type I error is

P (Hxx̂−Hy ŷ ∈ E(0, kCz(r̃))| ŷ valid) = 1− α

z
2

z1

−5 0 5

−5

0

5

(a) Some of the possible E(0, kCz(r)) for k = 1.
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(b) Example for bounds in the family E(0, kV(κ)) for
k = 1.

Figure 4. Example for ellipsoids with shape matrices Cz(r) and V(κ) in
the case of two-dimensional random vectors with symmetrically constrained
bounds for the maximum absolute correlation.

for the single kC(r̃)-bound. If there is a family of possible
correlations R, then we get

P
(
Hxx̂−Hy ŷ ∈

⋃
r∈R
E(0, kCz(r))| ŷ valid

)
≥ 1− α

for the union of the kC(r)-bounds, regardless which of these r
is considered. By “ŷ valid”, we mean that ŷ is only perturbed
by a noise of a distribution assumed to be possible in the
respective case. For visualization purposes, you can imagine
that the union of all possible kC(r)-bound ellipsoids includes
the kC(r)-bound ellipsoid for every individual density plus a
part beyond which covers additional probability mass.

As finding tighter bounds can only potentially reduce the
type II error probability which we do not specifically aim to
minimize, this issue is not dealt with in this paper. Similar
issues arise in the following subsections but are not addressed
any further.

D. Stochastic Error with Known Correlations and Set-
membership Error

Now we assume that the error consists of a stochastic part
of which the correlations are known and a set-membership
part. The stochastic uncertainty is described by a Gaussian
distribution with covariances Cxx and Cyy , while the unknown
but bounded errors are described by ellipsoids X = E(x̂,X)
and Y = E(ŷ,Y). We regard all elements of X and Y as
possible means of Gaussian distributions with covariances Cxx

and Cyy , respectively.



To ensure a type I error probability of less than α, we test
if the condition (2) is satisfied for any pair (x, y) ∈ X × Y
using the condition

∃x ∈ X , y ∈ Y : Hxx ∈ E(Hyy, kCz) . (4)

Visually speaking, we are taking the kCz-bound around every
Hyy with y ∈ Y and test if Hxx is contained for any x ∈ X .
This is demonstrated in Fig. 5(a). Alternatively, we could also
do this the other way around.

Drawing the covariance ellipsoid around every Hyy basi-
cally results in the Minkowski sum of E(Hy ŷ,HyYHT

y ) and
E(0, kCz) (Fig. 5(b)). As this allows us to equivalently test if
the intersection of HxX with the Minkowski sum is nonempty,
our new validation criterion becomes

E(Hxx̂,HxXHT
x ) ∩ (E(Hy ŷ,HyYHT

y )⊕ E(0, kCz)) 6= ∅ .
And this again is equivalent to testing if further adding the
shape, but not the translation, of HxX to the Minkowski sum
causes the sum to contain Hyx̂. The condition

Hxx̂ ∈ E(0,HxXHT
x )⊕ E(Hy ŷ,HyYHT

y )⊕ E(0, kCz)

is illustrated in Fig. 5(c). Please note that this can also be
written as

Hxx̂−Hy ŷ ∈ E(0,HxXHT
x )⊕E(0,HyYHT

y )⊕E(0, kCz) .

We could have arrived at this form faster, albeit less graphically,
had we started with generalizing the condition (1) from
subsection II-A as

∃x ∈ X , y ∈ Y : Hxx−Hyy ∈ E(0, kCz)

instead.
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(a) 1C-bound ellipsoids drawn in
dark green around some Hyy.
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(b) HY ⊕ E(0,Cz) in dark green.
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(c) Minkowski sum of all three in
dark green.

Figure 5. Different ways of visually interpreting the condition for validity
when k = 1.
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Figure 6. Visual representation of condition (5) similar to Fig. 5(a).

E. Stochastic Error with Imprecisely Known Correlations and
Set-membership Error

While considering stochastic and set-membership errors
as in the previous section, we now also respect all possible
covariance matrices as done in subsection II-C. We demand
the probability for a type I error to be less than α, regardless
which of the possible correlations and which of the elements
in X and Y are considered. In the visualization, Fig. 5(a) turns
into Fig. 6 as it suffices if the condition is satisfied for any of
the covariance matrices. Thus condition (4) becomes

∃x ∈ X , y ∈ Y,∃r ∈ R : Hxx ∈ E(Hyy, kCz(r)) . (5)

As done similarly in subsection II-C we can equivalently test
if

∃x ∈ X , y ∈ Y : Hxx ∈
⋃
r∈R
E(Hyy, kCz(r)) (6)

holds. From this form we only need two further steps for getting
to the form we need in subsection III-E. In the first step, we
write the above condition as

∃x ∈ X , y ∈ Y : Hxx−Hyy ∈
⋃
r∈R
E(0, kCz(r)) .

If we now—as mentioned in subsection II-C—consider a fam-
ily of ellipsoids with shape matrices V(κ) whose intersection
is equal to the union of the ellipsoids with shape matrices
Cz(r), we can write the condition as

∃x ∈ X , y ∈ Y : Hxx−Hyy ∈
⋂
κ

E(0, kV(r)) . (7)

In order to get toward another helpful formulation, we
consider that ⋃

r∈R
E(0, kCz(r))

is centrally symmetric, enabling us to write the condition (6)
as

∃x ∈ X , y ∈ Y : Hyy ∈
⋃
r∈R
E(Hxx, kCz(r))

instead. This is not much of a surprise as the initial considera-
tions could have led us to start with Hxx and Hyy swapped
in condition (5). Following another step of subsection II-D
and writing E(Hxx̂,HxXHT

x ) for additional brevity as HxX
yields the condition

HyY ∩ (HxX ⊕
⋃
r∈R
E(0, kCz(r))) 6= ∅ , (8)



which is useful for intuitively interpreting the example in
section IV.

III. METHODS FOR VALIDATION

Having shown all cases of interest, we now suggest ways to
actually perform the validation. We assume that our knowledge
of the imprecisely known correlations can be written as a bound
for the maximum absolute correlation that bounds the total
correlation coefficient rxy by the inequality

|rxy| ≤ rmax .

For brevity, we interpret a symmetric, positive definite
matrix W as a Gramian matrix of an inner product and use
dW for the induced metric. This allows us to write

(Hxx−Hyy)
TW(Hxx−Hyy)

=〈(Hxx−Hyy), (Hxx−Hyy)〉W = d2W(Hxx,Hyy) .

A. Stochastic Error with Known Correlations Only

If the correlations are known, we are therefore able to
calculate Cxy and thus also Cz as

Cz = Cov{Hxx−Hyy} =HxCxxH
T
x +HyCyyH

T
y

−HxCxyH
T
y −HyCyxH

T
x .

The condition (1) from subsection II-A can be verified in the
usual manner for testing containment in an ellipsoid by testing
the inequality

Hxx̂−Hy ŷ ∈ E(0, kCz)

⇔(Hxx̂−Hy ŷ)
T (kCz)

−1(Hxx̂−Hy ŷ) ≤ 1 .

By multiplying with k on both sides and setting W = C−1z ,
we can formulate the condition as

d2W(Hxx̂,Hy ŷ) ≤ k ,
which is basically performing the test via the Mahalanobis
distance.

B. Set-membership Error Only

Essentially only

HxX ∩HyY 6= ∅
has to be tested. As the transformations can easily be calculated
as

HxX = E(Hxx̂,HxXHT
x ) ,

the problem is reduced to testing if two arbitrary-dimensional
ellipsoids intersect.

A naive way of testing this criterion is by determining if
their distance is zero. While we use distance calculation in a
different subsection, the intersection test for two ellipsoids is a
common problem, which has attracted several researchers to
propose more efficient algorithms [15], [16]. It is still an active
field of research with a recently released algorithm solving the
problem with fixed complexity for a fixed dimension [17].

C. Stochastic Error with Imprecisely Known Correlations Only

For the case regarding known distributions with imprecisely
known correlations, it has been shown in [18] that we can get
a family of bounding ellipsoids in joint space in the form of

B(κ) =

[
1

η(κ)−κCxx 0

0 1
η(κ)+κCyy

]
for rmax ∈ (−1, 1)\{0}, |κ| < 0.5, and

η(κ) =
1−

√
r2max + κ2(1− r2max)2

1− r2max
that properly bound

Cov

{[
x
y

]}
=

[
Cxx Cxy(r)

Cyx(r) Cyy

]
≤ B(κ)

for all r ∈ R and κ ∈ (−0.5, 0.5).
Using the above, we can state that

∀r ∈ R, κ ∈ (−0.5, 0.5) : Cz(r) ≤ V(κ)

=
1

η(κ)− κHxCxxH
T
x +

1

η(κ) + κ
HyCyyH

T
y .

Thus, the Mahalanobis distance of Hxx and Hyy is always
less or equal if we use any V(κ) instead of any Cz(r) as
the covariance matrix. Most importantly, as the bounds also
satisfy condition (3), it is possible to determine the minimal
Mahalanobis distance for all C(r) by determining the maximum
of the Mahalanobis distances when V(κ) is used instead. All
in all, the test presented in [3] performs the desired validation
by testing

k ≥ max
κ∈(−0.5,0.5)

{
(Hxx̂−Hy ŷ)

T

(
HxCxxH

T
x

η(κ)− κ +
HyCyyH

T
y

η(κ) + κ

)−1
(Hxx̂−Hy ŷ)

}
,

which only requires a convex optimization.

D. Stochastic Error with Known Correlations and Set-
membership Error

Before considering imprecisely known correlations in pres-
ence of set-membership uncertainties, we present a technique
for testing in the case of known correlations. In this case, the
covariance Cz is known exactly. The condition

∃x ∈ X , y ∈ Y : Hxx−Hyy ∈ E(0, kCz)

presented in subsection II-D can be formulated differently using
the Mahalanobis distance as

∃x ∈ X , y ∈ Y : d2W(Hxx,Hyy) ≤ k . (9)

Essentially, we have to minimize a weighted ellipsoid
distance. This can be done by minimizing and testing

min
x∈X ,y∈Y

d2W(Hxx,Hyy) ≤ k

under the constraints

(x− x̂)TX−1(x− x̂) ≤ 1 and

(y − ŷ)TY−1(y − ŷ) ≤ 1 ,



which ensure both x and y are within the respective ellipsoids.
By expanding the terms and taking into consideration that x̂
and ŷ are constant vectors, we get the constraints

xTX−1x− 2x̂TX−1x+ x̂TX−1x̂− 1 ≤ 0 and

yTY−1y − 2ŷTY−1y + ŷTY−1ŷ − 1 ≤ 0

in the standard form for quadratically constrained quadratic
programs [19].

As W, X, and Y are at least positive semi-definite, this
is a convex optimization problem. There are several software
packages solving these kinds of optimization problems available
—refer to [19] for suggestions. Although the global optimum
can be searched via convex optimization, the algorithm may
safely terminate and accept the measurement if any pair (x, y) ∈
X × Y is found that satisfies

d2W(Hxx,Hyy) ≤ k .
Remark 2. As an alternative to computing the weighted ellipsoid
distance, we can compute the common euclidean ellipsoid
distance and implement the weighting by transforming the
constraints. First, we can also formulate the constraints in the
transformed space as

(Hxx−Hxx̂)
T (HxXHT

x )
−1(Hxx−Hxx̂) ≤ 1 and

(Hyy −Hy ŷ)
T (HyYHT

y )
−1(Hyy −Hy ŷ) ≤ 1 .

Second, we implement the weighting in the constraints. If we
denote the Cholesky decomposition of Cz as LTL we may
optimize and verify

min
x∈X ,y∈Y

d22(Hxx,Hyy) ≤ k

with the constraints

(LHxx−Hxx̂)
T (HxXHT

x )
−1(LHxx−Hxx̂)− 1 ≤ 0 and

(LHyy −Hy ŷ)
T (HyYHT

y )
−1(LHyy −Hy ŷ)− 1 ≤ 0

instead.

E. Stochastic Error with Imprecisely Known Correlations and
Set-membership Error

Having dealt with known correlations in the previous section,
we now use the above insights for a condition to perform the
validation in the case of imprecisely known correlations. In
this case—similar to condition (9)—condition (7) becomes

∃x ∈ X , y ∈ Y : max
κ∈(−0.5,0.5)

d2W(κ)(Hxx,Hyy) ≤ k (10)

with W(κ) = V(κ)−1. We can also write this as the
optimization problem

min
x∈X ,y∈Y

{
max

κ∈(−0.5,0.5)
d2W(κ)(Hxx,Hyy)

}
≤ k . (11)

The algorithm for performing the above test was imple-
mented in MATLAB and is shown in a MATLAB-like format
in algorithm 1. Compared with the algorithms in the previous
sections, this is an expensive one to solve numerically: for
every function evaluation of f(x, y) necessary for solving
the outer optimization loop, the inner convex optimization
depending on κ has to be performed. Furthermore, despite the

convexity of both optimization problems regarded separately,
we cannot guarantee that the outer optimization is free of
local minima in this form. Be aware that due to the inner
optimization being performed, the outer optimization is in
general no quadratic program. Nonetheless, our implementation
that uses built-in MATLAB functions for solving the nonlinear
program performed considerably well. As the optimization
algorithm for the outer optimization, both MATLAB’s interior
point algorithm [20] and the Karush–Kuhn–Tucker equations
[21] based solver were regarded.

Keeping in mind that the condition (10) is not aiming
to minimize the type II error probability, a tempting way to
perform an easier validation is by performing tests that may
accept even more measurements. Designing and evaluating such
algorithms may be a topic for prospective research.
Remark 3. For example swapping min and max would cause
the test to become more conservative. While

∃x∀z : p(x, z)→ ∀z∃x : p(x, z)

is logically valid for any predicate p(x, z), the statement

∀z∃x : p(x, z)→ ∃x∀z : p(x, z)
is only valid for certain predicates. In the above case, you can
imagine that

min
x∈X ,y∈Y

d2W(κ)(Hxx,Hyy) ≤ k (12)

may be satisfied for any κ ∈ (−0.5, 0.5), thus satisfying

max
κ∈(−0.5,0.5)

{
min

x∈X ,y∈Y
d2W(κ)(Hxx,Hyy)

}
≤ k .

However, if different κ require different pairs (x, y) ∈ X × Y
to fulfill the condition (12), then condition (11) is not satisfied.

IV. EXAMPLE AND EXPERIMENTS

Now, let us look at an example for the above described
data validation. We know from condition (8) in subsection II-E
that the above test should consider a measurement Y valid iff

HyY ∩ (HxX ⊕
⋃
r∈R
E(0, kCz(r))) 6= ∅ . (13)

In our example, we considered X and Cxx to be fixed. For
the sake of being able to efficiently visualize the results, we
considered Cyy to be fixed as well. k was set to 1 and the
imprecisely known correlations were symmetrically bounded
by rmax = 0.7. The other fixed parameters were chosen as

x̂ =

[
0
0

]
,

X =

[
3 1
1 5

]
,

Hx =

[
1 0
0 1

]
, Hy =

[
1 0
0.1 2

]
,

Cxx =

[
0.2 0.1
0.1 0.4

]
and Cyy =

[
0.4 0
0 0.2

]
.

As no optimization specific parameters were passed, MATLAB
set these automatically. For example, for the Karush–Kuhn–
Tucker based optimization, the limits for both the iteration and



1 function isValid=valTest(x̂,Cxx,X,ŷ,Cyy,Y,Hx,Hy,rmax,optimAlgo,k)

2 % Use 'active−set' as optimAlgo for Karush–Kuhn–Tucker equations based
3 % optimization or 'interior−point' for interior point based optimization
4 % Use ellipsoid centers as starting points for the optimization
5 v0=[x̂;ŷ]; % As vector because they may not be of equal lengths

6 options=optimset('Algorithm',optimAlgo);
7 % Perform outer optimization
8 [∼,minDist]=fmincon(@objFun,v0,[],[],[],[],[],[],@conFun,options);
9 isValid=minDist≤k;

10 function d=objFun(v) % Inner optimization performed in objective
11 x=v(1:length(x̂)); y=v(length(x̂)+1:end);

12 η=@(κ)
1−
√
r2max+κ2(1−r2max)2

1−r2max
; % Declare η as a lambda function

13 [∼,d]=fminbnd(@(κ)− (Hxx−Hyy)T ... % Use negative to find max

14 ·( 1
η(κ)−κHxCxxHT

x + 1
η(κ)+κ

HyCyyHT
y )

−1(Hxx−Hyy),−.5, .5);
15 d=−d;
16 end
17 function [c,ceq]=conFun(v) % Set constraint function
18 x=v(1:length(x̂)); y=v(length(x̂)+1:end);

19 c=[xTX−1x− 2x̂TX−1x+ x̂TX−1x̂− 1; ...

20 yTY−1y − 2ŷTY−1y + ŷTY−1ŷ − 1];

21 ceq=[];
22 end
23 end

1

Algorithm 1. MATLAB-like code for performing the validation.

function evaluations were automatically set to 400. In the case
of the interior point based optimization, the iteration limit and
function evaluation limits were 100 and 3000, respectively.

As an example, six measurements and their corresponding
classification results are drawn in Fig. 7(a). For better visual
judgment an approximation of

HxX ⊕
⋃
r∈R
E(0, kCz(r))

is shown in Fig. 7(b).

In order to assess the impact of the numerical and optimiza-
tion related issues on the classification, we pseudorandomly
generated a thousand measurements and performed the val-
idation separately for both optimization algorithms. For the
same measurements, we performed a test based on numerically
approximating condition (13) to compare with. The numeric
approximation was implemented by building the convex hull of
points on the edges of several covariance ellipsoids, taking the
Minkowski sum with HxX , and then testing for an intersection
with HyY . Whereas this may be an option for lower dimensions,
it quickly gets unfeasible for higher dimensions. Using the
Karush–Kuhn–Tucker based optimization, the classification of
992 out of 1000 measurements agreed with the results of the
approximation of condition (13). When we used the interior
point based implementation, the tests agreed 995 out of 1000
times. There were measurements that the approximation of
condition (13) considered valid but the optimization based
implementations did not—and also the other way around.
Four out of the five times a disagreement occurred with the
interior point based algorithm, the Karush–Kuhn–Tucker based
implementation yielded the same result. Thus, inaccuracies in
the approximation of condition (13) should also be considered
as a source of error. Nonetheless, as the optimization based
classifies did not always agree and differences in reported
Mahalanobis distances were observed, we believe that local
minima do in fact cause misclassifications for the above
presented algorithm, regardless of the optimization algorithm

employed. However, the misclassification rates were low and
could be further reduced by using more robust optimization.
While these results are generally suggesting that the algorithm
works reasonably well in lower dimensions, a more rigorous
evaluation also considering higher dimensions may be in order
for further assessment of the algorithm’s performance.

The source code for the optimization and an
example can be viewed, run, and downloaded at
http://www.cloudrunner.eu/algorithm/123. The example
is similar to Fig. 7(b)—six measurements are generated
pseudorandomly, with visual aids displayed for comparing to
an approximation of condition (13).

V. CONCLUSION AND OUTLOOK

Data validation can be done in easy and efficient ways as
long as the distributions and correlations of the errors are fully
known. While previous work has already been concerned with
relaxing the requirement for fully known correlations [3], we
have shown the challenges of further regarding set-membership
uncertainties.

Whereas performing data validation for purely set-
membership uncertainties can be reduced to the common
intersection test, additionally taking stochastic uncertainties into
consideration requires more complex problems to be solved.
For the frequently assumed case of known correlations, we
have presented a test that performs the validation via convex
optimization and for the case of imprecisely known correlations,
we gave an example for an expensive algorithm.

Although further complexity is added, the tests allow for
validation while modeling the perturbations with as much
knowledge as available and without any need for further
assumptions. Unsurprisingly, regarding a combined stochastic
and set-membership error as being purely Gaussian simplifies
the validation, but it may impede the quality of the actual
validation performed.

http://www.cloudrunner.eu/algorithm/123
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(a) Some possible 1C-bound ellipsoids drawn centered in dark green with
measurements and their validity in the corresponding colors.
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(b) Minkowski sum of union of some possible 1C-bound ellipsoids and HxX
drawn in dark green.

Figure 7. Classification results for an example. HxX in blue, measurements classified as valid in light green and measurements classified as invalid in red.

As the benefits of a better model for the uncertainties
may still persist when the computationally expensive tests
are approximated, future work will be concerned with fast
approximations for the presented concepts. Quick tests that
may only cause additional type II errors but no type I errors
(as hinted at in remark 3) would still allow us to state an upper
bound for the type I error probability. Instead of approximating
the tests, they could also be sped up by criteria that allow for
efficient classification in many cases, avoiding the expensive
tests except for cases in which they are inevitable.

Opposite to techniques that potentially sacrifice probability
of correctly classifying invalid measurements for easier cal-
culation, tighter bounds as explained in remark 1 could be
explored further. This can lead to a reduction of the type II
error probability while still satisfying the predefined lower
bound for the correct classification of valid measurements.
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