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Abstract—This paper proposes Gaussian filters for polyno-
mial systems with efficient solutions for both the prediction
and the filter step. For the prediction step, computationally
efficient closed-form solutions are derived for calculating the
exact moments. In order to achieve a higher estimation quality,
the filter step is solved without the usual additional assumption
that state and measurement are jointly Gaussian distributed. As
this significantly complicates the required moment calculation,
a homotopy continuation method is employed that yields almost
optimal results.

I. INTRODUCTION

Closed-form recursive Bayesian state estimation can only
be performed for a few special systems, such as linear con-
tinuous systems or systems with finite state and measurement
spaces. The famous Kalman filter is the best linear estimator,
being optimal for the linear Gaussian case. For finite state
and measurement spaces, grid-based filters are optimal [1].
For arbitrary nonlinearities, however, that are typical in real-
world applications such as target tracking, financial forecast-
ing, medical surveillance, or robotics, recursive Bayesian state
estimation requires approximate solutions.

A practical approximation known as Gaussian assumed
density filtering restricts the state estimate to be Gaussian
distributed [2]. Preserving the mean and variance of the state
via moment matching requires the solution of expectation
integrals. Since closed-form expectation calculation is not pos-
sible in general and numerical integration is computationally
infeasible, many fast approximate Gaussian assumed density
filters utilizing the Kalman filter equations have been devel-
oped in the past. Employing first-order Taylor-series expansion
to linearize the given system and measurement models leads to
the extended Kalman filter [3]. This fast filter is only applicable
to mild nonlinearities and requires differentiability. To cover
also stronger nonlinearities, so-called linear regression Kalman
filters have become popular in the recent years, where the
approximation relies on deterministic sampling. Part of this
group of Gaussian filters are the unscented Kalman filter [4],
the cubature Kalman filter [5], or the Gaussian estimator [6].

Compared to these generic Gaussian filters, improved
estimation performance can be achieved by focusing on a
particular type of nonlinearity. In this paper, the focus is on
polynomial nonlinearities. First results on Bayesian estimation
for polynomial dynamics but linear measurement models can
be found in [7]. The more general case is treated in [8], where
exact moment calculation for the prediction step is derived
based on Taylor-series expansion.

In Section IV of this paper, special properties of ex-
ponential densities with polynomial exponents are exploit-
ed to efficiently calculate the moments after a polynomial
transformation. Compared to [8], this leads to a simplified
and computationally cheaper calculation of moments after a
prediction step. A straightforward application of these in-
sights to the measurement step requires the assumption of
a jointly Gaussian distributed state and measurement, which
is a typical assumption in Gaussian filtering. For polynomial
nonlinearities, however, the posterior density is an exponential
density and thus, it is a conjugate density to the prior Gaussian
density. Unfortunately, exponential densities allow no closed-
form calculation of the moments in general, which is necessary
for Gaussian filtering. To overcome this limitation, a homotopy
continuation approach for calculating the posterior moments
is proposed in Section V. The continuation starts with the
known moments of the Gaussian prior, while the likelihood,
which depends on the polynomial nonlinearity, is gradually
introduced into the measurement update step. This causes a
continuous transformation of the prior moments towards the
posterior moments. The transformation can be expressed via a
system of first-order ordinary differential equations, for which
a plethora of efficient numerical solvers exists.

The proposed Gaussian filters for polynomial nonlinearities
are compared to the state-of-the-art by means of numerical
simulations in Section VI. The paper closes with a conclusion
and an outlook to future work.

II. PROBLEM FORMULATION

In this paper, nonlinear discrete-time system and measure-
ment equations

xk+1 = ak(xk) + wk , (1)
zk = hk(xk) + vk , (2)

are considered, where xk is the scalar system state at time
step k = 0, 1, . . . and zk is the scalar measurement. An actual
measurement value ẑk is a realization of the random variable
zk. Both wk and vk are white zero-mean Gaussian noise
processes with variance (σwk )

2 and (σvk)
2, respectively.

In Bayesian estimation, two alternating steps, i.e., predic-
tion and measurement update, are performed for estimating the
system state xk. The latest estimate of xk−1 is propagated to
time step k by means of the system equation (1) in the pre-
diction step. In the measurement update, a given measurement



value ẑk is exploited for updating xk under consideration of
the measurement equation (2).

Exact closed-form solutions for the prediction and the
measurement update are not available for arbitrary ak(.), hk(.)
and arbitrarily distributed random variables. This paper is
restricted to polynomial system and measurement functions
ak(.) and hk(.), respectively. It is further assumed, that the
system state xk can be represented by means of Gaussian
distributions for all time steps k. Thus, it is sufficient to
investigate polynomial transformations of the form

y = g(x) + w =

n∑
i=0

ci · xi + w , (4)

where a Gaussian x ∼ N (x;µx, σ
2
x) with mean µx and

variance σ2
x is mapped to a random variable y. In case of

a prediction, y corresponds to xk+1, while for a measurement
update, y is the measurement zk. The transformation is affect-
ed by zero-mean Gaussian noise w ∼ N (w; 0, σ2

w), which is
assumed to be uncorrelated with x.

The goal now is two-fold: (i) calculating the mean and
variance of y for prediction purposes and (ii) incorporation of
a realization ŷ of y to perform a measurement update.

III. EXPONENTIAL DENSITIES

At first, a brief introduction to the so-called family of
exponential densities with polynomial exponents is provided.
Their properties regarding recursive moment calculation play
a significant role for solving the problem at hand.

A. Definition

An unnormalized one-dimensional exponential density is
defined as

f(x) = exp

(
n∑
i=0

ηi · xi
)

= exp
(
ηT · x

)
,

with parameter vector ηT , [η0, η1, . . . , ηn] and vector of
monomials xT ,

[
1, x, x2, . . . , xn

]
. To ensure that the ex-

ponential density is non-negative for all x ∈ R and has finite
moments, the maximum degree n ∈ N must be even and the
highest-order coefficient ηn must be negative, i.e., ηn < 0. If
desired, the exponential density can be normalized by adding
a term log(c(η)) to the first coefficient η0, where c(η) is a
normalization constant.

An important special case of the family of exponential
densities is the (unnormalized) Gaussian density

f(x) = exp

(
− 1

2

(
x−µx

σx

)2
)

= exp
(
η0 + η1 · x+ η2 · x2

)
,

with η0 = −µ2
x/(2σ

2
x), η1 = µx/σ

2
x, and η2 = −1/(2σ2

x).
To obtain a normalized Gaussian density, the first coefficient
is modified according to η0 = −µ2

x/(2σ
2
x) + log

(
c(η)

)
with

c(η) = 1/
√

2πσx, while η1 and η2 remain unchanged1.

B. Recursive Moment Calculation

In general, no analytic expressions for the (non-central)
moments

Ei , E{xi} =

∫
xi · f(x) dx (5)

of an exponential density for i ∈ N0 exist, not even for the
zeroth-order moment E0, which is required for determining
the normalization constant c(η). Only for some special cases
like the Gaussian density, it is possible to derive analyt-
ic expressions. However, if at least the first n moments
E0,E1, . . . ,En−1 are given, all higher-order moments can be
determined recursively. As shown in [9], [10], integrating (5)
by parts with respect to x yields

Ei =

(
xi+1

i+ 1
f(x)

)∣∣∣∣∞
−∞︸ ︷︷ ︸

= 0

−
∫

xi+1

i+ 1

∂f(x)

∂x
dx

= −
∫

xi+1

i+ 1

(
n∑
j=1

j · ηj · xj−1

)
· f(x) dx ,

which finally gives

Ei = −
n∑
j=1

j

i+ 1
ηj Ei+j . (6)

Thus, if the n lower-order moments ET
0:n−1 , [E0, . . . ,En−1]

are given and the moments up to Em, m ≥ n are of interest,
solving the linear system of equations

Q(η) · E0:n−1 = R(η) · En:m (7)

gives the desired higher-order moments ET
n:m , [En, . . . ,Em].

The linear system of equations in (7) follows from rearranging
the result in (6), where the matrices Q(η) ,

[
A(η)

]
0:n−1

and
R(η) , −

[
A(η)

]
n:m

are based on the (m−n+1)× (m+1)
matrix A(η) in (8). Here, [A]n:m indicates the columns n to m,
n ≤ m, of matrix A. The matrix R(η) is triangular with zeros
everywhere except of the main diagonal and the n diagonals
below the main diagonal. Thus, (7) can be efficiently solved
by means of forward substitution.

It is worth mentioning that it is not possible in general to
deduce the parameter vector η from given moments E0:n−1.
Again, the Gaussian density is an exception from this general
statement.

1The term N (x;µx, σ2
x) always refers to a normalized Gaussian density

in this paper.

A(η) =

︸ ︷︷ ︸
=Q(η)

︸ ︷︷ ︸
=−R(η)


1 1

1η1
2
1η2 · · · n

1 ηn 0 0 · · · 0
0 1 1

2η1
2
2η2 · · · n

2 ηn 0 · · · 0
...

. . . . . . . . . . . . . . . . . .
...

0 · · · 0 1 1
m−nη1

2
m−nη2 · · · n

m−nηn 0

0 · · · 0 0 1 1
m−n+1η1

2
m−n+1η2 · · · n

m−n+1ηn

 =


1 i = j
j−i
i ηj−i i < j ≤ i+ n

0 otherwise
(8)



IV. GAUSSIAN FILTERING

Based on the properties of exponential densities, it is now
possible to derive closed-form and computationally efficient
expressions for the mean and variance of the transformed
random variable y.

A. Mean Propagation

When propagating the Gaussian random variable x through
the polynomial transformation g(.) in (4), the mean µy of y
can be expressed as

µy = E{g(x) + w} = E{g(x)}

=

n∑
i=0

ci ·
∫
xi · N (x;µx, σ

2
x) dx

=

n∑
i=0

ci · E{xi}︸ ︷︷ ︸
= Ei

. (9)

Thus, the mean µy results in a weighted sum of non-central
moments of a Gaussian random variable. Given the first two
moments E0 = 1 and E1 = µx of x, all remaining moments
up to order n can be calculated by means of solving (7). In
doing so, (9) can be expressed as

µy = cTn · E0:n = cTn ·
[
I2

L

]
· E0:1 , (10)

with L ,
(
R(η)

)−1
Q(η) , where the parameter vector η

comprises the parameters of a (normalized) Gaussian density
as defined in Section III-A. Furthermore, cTn , [c0, c1, . . . , cn]
is the vector of polynomial coefficients and In is the n × n
identity matrix.

It is important to note that the second equation in (10)
is merely of formal use. From a computational and numerical
point of view, it is recommended to first determine the missing
higher-order moments E2:n as described in Section III-B
by solving the linear system of equations (7) via forward
substitution. In a second step, the solution for E2:n is applied
to the first equation in (10).

B. Variance Propagation

In a similar fashion as before, the variance σ2
y of y can be

determined. For this purpose, the relation

σ2
y = E{(y − µy)2} = E{(g(x) + w − µy)2}

= E{g(x)2} − µ2
y + σ2

w (11)

is exploited, where both the noise variance σ2
w and the prop-

agated mean µy are known. Merely the first term (11) has to
be determined, which yields

E{g(x)2} =

∫
g(x) · g(x) · N (x;µx, σ

2
x) dx

=

n∑
i=0

n∑
j=0

ci · cj ·
∫
xi+j · N (x;µx, σ

2
x) dx︸ ︷︷ ︸

= Ei+j

.

Thus, in order to calculate the variance σ2
y , it is necessary to

consider all moments up to order 2n. Given these moments
and exploiting the fact that the product of two polynomials

corresponds to a discrete convolution of the polynomials’ co-
efficients, the variance calculation can be compactly written as

σ2
y = (cn ∗ cn)

T · E0:2n − µ2
y + σ2

w

= (T · cn)
T · E0:2n − µ2

y + σ2
w ,

(12)

where ∗ is the discrete convolution operator. The second
equality indicates an efficient matrix-vector realization of the
convolution by means of the matrix T with entries ti,j =
ti+1,j+1 = ci−j if i ∈ [j, j + n] and ti,j = 0 otherwise,
where i = 1, 2, . . . , 2n + 1 and j = 1, 2, . . . , n + 1. Hence,
T is special type of matrix, namely a triangular Toeplitz
matrix with only the mean diagonal and n diagonals below the
main diagonal being non-zero and all elements on individual
diagonals being equal.

C. Covariance Calculation

For exploiting the ability of calculating moments of non-
linear mappings, a common assumption for performing the
measurement update in Gaussian filtering is to assume that
the state and the measurement are jointly Gaussian distributed.
This only requires the calculation of the covariance between
state and measurement, which coincides with the covariance
σxy between x and y for the considered generic transformation
(4). Similar to (11), the covariance can be formulated as

σxy = E{(x− µx) · (y − µy)}
= E{x · g(x)} − µx · µy , (13)

where the expected value corresponds to

E{x · g(x)} =

∫
x · g(x) · N (x;µx, σ

2
x) dx

=

n∑
i=0

ci ·
∫
xi+1 · N (x;µx, σ

2
x) dx︸ ︷︷ ︸

= Ei+1

.

This is almost identical to the mean calculation in (9) except
for the shift by one in the order of the involved moments.
Thus, the covariance is given by

σxy = cTn · E1:n+1 − µx · µy , (14)

where µy is already known from (10).

D. Polynomial Kalman Filter

The results derived in the previous sections allow the
formulation of a Gaussian state estimator for polynomial
nonlinearities. For this purpose, the well-known structure of the
Kalman filter is exploited. The resulting polynomial Kalman
filter (PKF) is listed in Algorithm 1 and described in detail in
the following paragraphs.

1) Prediction: Given the posterior state estimate xek−1 ∼
fek−1(xk−1) , N

(
xk−1;µek−1, (σ

e
k−1)2

)
of the previous mea-

surement update, the prediction from the previous time step
k− 1 to the current time step k requires the calculation of the
predicted mean µpk and variance (σpk)

2. As the system function
ak(.) is assumed to be a polynomial of degree np ∈ N with
coefficient vector cpnp

, equation (10) and (12) can be directly
applied in order to determine the desired predicted moments.



Algorithm 1 Polynomial Kalman Filter (PKF)

. Prediction
1: Determine moment vector E0:2np

of posterior state xek−1
by solving (7)

2: Predicted mean: µpk = cpnp
· E0:np

3: Predicted variance:
(σpk)

2
=
(
T · cpnp

)T · E0:2np
− (µpk)

2
+ (σwk )

2

. Measurement Update
4: Determine moment vector E0:2ne

of predicted state xpk by
solving (7)

5: Measurement mean: µzk = cene
· E0:ne

6: Measurement variance:
(σzk)

2
=
(
T · cene

)T · E0:2ne
− (µzk)

2
+ (σvk)

2

7: Covariance: σxzk =
(
cene

)T · E1:ne+1 − µ
p
k · µzk

8: Kalman gain: Kk = σxzk / (σzk)
2

9: Calculate posterior mean µek according to (15)
10: Calculate posterior variance (σek)

2 according to (16)

2) Measurement Update: The measurement update aims
at updating the prediction xpk ∼ fpk (xk) , N

(
xk;µpk, (σ

p
k)2
)

with the latest measurement value ẑk. To allow for a closed-
form and computationally efficient update, a common assump-
tion in nonlinear Kalman filtering—as in the extended Kalman
filter or the unscented Kalman filter—is that the state xpk and
the measurement zk are jointly Gaussian. The implication
of this so-called joint Gaussian assumption is discussed in
Section IV-E. It requires to compute the joint mean vector and
joint covariance matrix

µxz
k

=

[
µpk
µzk

]
, Cxz

k =

[
(σpk)

2
σxzk

σxzk (σzk)
2

]
,

respectively. The posterior mean and variance are then calcu-
lated according to

µek = µpk +Kk · (ẑk − µzk) , (15)

(σek)
2

= (σpk)
2 −Kk · σxzk , (16)

which coincides with the well-known Kalman filter update
step, where Kk , σxzk / (σzk)

2 is the Kalman gain. This mea-
surement update requires determining the measurement mean
µzk and variance (σzk)

2 as well as the covariance σxzk of state
and measurement. Given that the measurement function hk(.)
is a polynomial of degree ne ∈ N with coefficient vector cene

,
all three values can be calculated by means of (10), (12), and
(14), respectively. Thanks to these closed-form expressions and
the simple Kalman filter equations, the measurement update is
straightforward to realize and computationally undemanding.

E. Discussion

When comparing the PKF with the approach proposed
in [8], it becomes apparent that both approaches are equivalent
regarding the calculated mean and variance values. However,
the PKF has the following benefits. First, the involved matrices
for calculating the desired moments are straightforward to
determine. For instance, the matrices Q(η) and R(η) merely
depend linearly on the parameters of the Gaussian density.
In [8], however, the involved matrices depend on binomials

coefficients, powers of the mean value, and weighted scalar
products of the coefficient vector. This leads to a high com-
putational load for determining the matrices and may cause
numerical instability. Second, also the worst-case complexity
is higher. While calculating the variance (14) can be performed
in O(n · log n) if the convolution is realized via fast Fourier
transform, the variance calculation in [8] scales with O(n2),
where O(.) is the big O in Landau notation. This difference
is especially of importance in case of polynomials with a
high degree.

The PKF makes two different Gaussian assumptions. First,
it assumes the predicted or posterior density to be Gaus-
sian. Second, in order to perform the measurement update,
it assumes that the joint density of state and measurement
is Gaussian as well. If only the first Gaussian assumption
would be in place, the PKF would be an exact Gaussian
assumed density filter as it performs moment matching, i.e., the
mean and variance calculated by PKF coincide with the true
mean and variance. The additional joint Gaussian assumption,
however, can result in a poor approximation of the true mean
and variance, which may cause a significant loss in estimation
performance or even a divergence of the estimator.

To demonstrate the effect of the joint Gaussian assumption
on the estimation performance, the polynomial model

z = xi + v (17)

is considered in the following, where i > 0 is even and the
state is x ∼ N (x; 0, σ2

x). According to (9), (11), and (13), the
mean µz , variance σ2

z , and covariance σxz are given by

µz = Ei , σ2
z = E2i−Ei +σ2

v , σxz = Ei+1 , (18)

respectively. Since x has zero mean, it follows that η1 = 0 .
Thus, the matrix Q(η) has only two non-zero elements q11 =
q22 = 1, where qij is the element at row i and column j of
matrix Q. Furthermore, the matrix R(η) is zero everywhere
except on the main diagonal and the second diagonal below
the main diagonal. This special structure of Q(η) and R(η)
leads to the conclusion that all even moments of x are non-
zero and all odd moments are zero, i.e., Ei 6= 0 and Ei+1 = 0
for all i being even. Hence, the covariance σxz in (18) is zero.
As a result, state x and measurement z are uncorrelated and
the joint Gaussian of state and measurement is axis-aligned. In
Fig. 1(a), the joint Gaussian for i = 2, σ2

x = 1, and σ2
v = 0.1

is depicted.

As the covariance σxz is zero, the Kalman gain K in (15)
and (16) is zero as well and no update of the predicted state
occurs, i.e., the posterior state xe is identical to the predicted
state xp. In this case, a given measurement value has no impact
on the estimation. This, however, is not the case, if the joint
Gaussian assumption is not made. In order to demonstrate this,
the measurement update is now treated from a strict Bayesian
perspective. Here, the posterior state xe is represented by the
conditional density fe(x) , f(x|z) resulting from Bayes’ rule

fe(x) =
f(z|x) · f(x)

f(z)
=
f(x, z)

f(z)
, (19)

where f(z|x) is the likelihood and f(x) is the prior density
of x, which corresponds to the predicted Gaussian density
fp(x) = N

(
x;µp, (σp)2

)
in case of the considered recursive

state estimation.
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Fig. 1. Joint density f(x, z) and posterior density fe(x) for i = 2, i.e., for a quadratic polynomial. (a) Gaussian approximation of the joint density. The red
line indicates the measurement value ẑ = 2. (b) True joint density. (c) True posterior density (black) and Gaussian approximations, where one is obtained based
on the joint Gaussian assumption (dotted) and the other via moment matching (dashed), i.e., its mean and variance coincide with the true posterior moments.

For the considered model (17) with a state x having zero
mean, the joint Gaussian assumption leads to a factorization
of the joint density f(x, z) = f(x) · f(z) as x and z
are uncorrelated, which is equivalent to independence for
Gaussian random variables. Hence, the Bayesian update in
(19) degenerates to fe(x) = f(x) = fp(x). Actually, the
joint density f(x, z) is an exponential density for polynomial
nonlinearities. This follows from the fact that the likelihood
f(z|x) is defined as

f(z|x) ,
∫
δ(z − xi − v) · f(v) dv = N

(
z;xi, σ2

v

)
, (20)

where δ(.) is the Dirac delta distribution and the second
equality results from exploiting the sifting property of the
Dirac delta distribution. The product of likelihood and prior
density leads to the exponential density

f(x, z) = f(z|x) · f(x) = N
(
z;xi, σ2

v

)
· N
(
x; 0, σ2

x

)
= exp

(
− log(2πσxσv)

− 1
2σ2

v
·
(
z2 +

σ2
v

σ2
x
x2 − 2zxi + x2i

))
.

(21)

This exponential joint density is depicted in Fig. 1(b) for
i = 2. By comparing Fig. 1(a) with Fig. 1(b) the difference
between the true joint density and its Gaussian approximation
becomes apparent. Given a measurement value ẑ = 2, Fig. 1(c)
depicts the posterior densities obtained for the Gaussian joint
density and the true exponential joint density. It can be seen
that the true posterior is bimodal, which only can be coarsely
approximated by a Gaussian density. Furthermore, due to the
joint Gaussian assumption, the Gaussian posterior does not
even match the true posterior mean and variance.

The true posterior is an exponential density, since the joint
density f(x, z = ẑ) is exponential and f(ẑ) is merely a
normalization constant for a given measurement value ẑ. Thus,
the posterior is a conjugate density of the prior density in
the case of polynomial nonlinearities. Unfortunately, a general
exponential density is not well suited for recursive processing
for mainly two reasons: First, the prediction step as described
above requires the availability of the moments E0:2i−1, but for
exponential densities the calculation of these moments cannot
be performed in closed form. Second, even if the moments
were available, the prediction step itself merely provides the

predicted moments and no analytic density representation. De-
termining an exponential density that matches given moments
is also not possible in closed form. To overcome these limi-
tations, a novel approach for accurately determining the true
posterior mean and variance is proposed in the next section. In
doing so, a computationally efficient, recursive Gaussian filter
without the joint Gaussian assumption is obtained.

V. HOMOTOPIC BAYESIAN MEASUREMENT UPDATE

In this section, a new method for directly calculating the
moments of the posterior density will be introduced that does
not require the joint Gaussian assumption and that provides a
much higher estimation quality.

The key idea is to transform the known moments of the
prior Gaussian density continuously into the desired posterior
moments. For this purpose, homotopy continuation for calcu-
lating the moments of exponential densities as proposed in [9]
is exploited. By means of a so-called progression parameter
γ ∈ [0; 1] the posterior density fe(x) is parameterized in such
a way that for γ = 0 the posterior density corresponds to
prior Gaussian density fp(x) and for γ = 1 the posterior
density corresponds to the true exponential density. For the
initial value γ = 0, the moments are known as they coincide
with the moments of the Gaussian prior. Incrementing the
progression parameter causes moment variations described by
means of a system of ordinary differential equations (ODEs).
Solving this system of ODEs for γ ∈ [0; 1] gives the desired
posterior moments.

A. Parameterization

To allow for homotopy continuation, the Bayesian mea-
surement update in (19) is parameterized according to

fe(x; γ) =
(

1
f(ẑ) · f(ẑ|x)

)γ
· fp(x) (22)

for a given measurement value ẑ, with likelihood f(ẑ|x) =
N
(
ẑ;h(x), σ2

v

)
according to (20) for a polynomial measure-

ment model (2). Further, fe(x; γ) is a parameterized version
of the posterior density. For γ = 1, this parameterized
measurement update corresponds to the standard Bayes’ rule,
while for γ = 0, the prior density fp(x) is directly assigned to
the posterior density, i.e., no measurement update is performed.



In order to simplify the following calculations, the nor-
malization constant 1/f(ẑ) in (22) is ignored, which is without
any disadvantages. Since the zeroth-order moment E0, which
is reciprocal to the normalization constant, will be calculated
as well, ex post division of all higher-order moments by E0

leads to the correct results (see Section V-C).

Due to ignoring the normalization constant, merely the
proportional relation

fe(x; γ) ∝ f(x, ẑ; η(γ)) , f(ẑ|x)γ · fp(x) (23)

is considered instead of (22), where the parameterized joint
density f(x, ẑ; η(γ)) = exp

(
η(γ)T · x

)
is an exponential

density similar to (21) with parameter vector

η(γ) , ηp + γ · ηl ∈ R2ne+1

depending on γ . Here, ηp is the parameter vector of the
Gaussian prior fp(x) and ηl is the parameter vector of the
likelihood f(ẑ|x) according to

ηl =

− log
(√

2πσv
)
− ẑ2

2σ2
v

ẑ
σ2
v
· cene

0

− 1
2σ2

v
·
(
cene
∗ cene

)
,

with cene
being the coefficient vector of the measurement

function h(.) and 0 being a vector of zeros of appropriate
dimension. The parameter vector η(γ) directly reflects the
continuation in (23).

It is worth mentioning that the parameterized joint density
always is a valid exponential density for each γ ∈ [0; 1] . As
it directly depends on the Gaussian measurement noise v and
the Gaussian prior fp(x), the highest-order monomial in x is
even and the last element in ηl is negative.

B. System of Ordinary Differential Equations

By a continuous modification of the progression param-
eter γ, a continuous variation of the parameter vector η(γ)
is achieved. This in turn results in a variation of the moments
Ei(η(γ)), i = 0, . . . , 2ne−1, of the parameterized joint density
f(x, ẑ; η(γ)) . These moment variations depending on γ can
be described by means of a system of ODEs by calculating
the partial derivatives Ėi ,

∂ Ei(η(γ))

∂γ for i = 0, . . . , 2ne − 1 .
The partial derivative of the ith-order moment is given by

Ėi =
∂ Ei(η(γ))

∂γ
=

[
∂ Ei
∂η

∣∣∣∣
η=η(γ)

]T

·
∂η(γ)

∂γ

=

(
∂η(γ)

∂γ

)T

·
∫
xi ·

∂f(x, ẑ; η)

∂η

∣∣∣∣
η=η(γ)

dx

=

(
∂η(γ)

∂γ

)T

·
∫
xi


1
x
...

x2ne

 exp
(
η(γ)T · x

)
dx

=
[
Ei
(
η(γ)

)
Ei+1

(
η(γ)

)
· · · Ei+2ne

(
η(γ)

)]
· ηl , (24)

which relates the variation of the ith-order moment to moments
of order up to i + 2ne . In the following, E

(γ)
i , Ei(η(γ)) is

used as shorthand term.

With the result in (24), the system of ODEs comprising the
moment variations of all moments up to order 2ne − 1 is

Ė0:2ne−1 =
(
T
(
ηl
))T · E(γ)

0:4ne−1

= Tl · E(γ)
0:2ne−1 + Th · E(γ)

2ne:4ne−1 ,

where T(ηl) is a Toeplitz matrix with entries ti,j = ti+1,j+1 =
ηli−j if i ∈ [j, j + 2ne] and ti,j = 0 otherwise, where i =
1, 2, . . . , 4ne and j = 1, 2, . . . , 2ne . The 2ne × 2ne matrices
Tl and Th are sub-matrices of T(ηl) according to T

(
ηl
)

=[
Tl Th

]T
. Besides the lower-order moments E

(γ)
0:2ne−1, the

system of ODEs also depends on the higher-order moments
E

(γ)
2ne:4ne−1 . Fortunately, with the result of (7), the dependence

on the higher-order moments can be resolved. In doing so, the
system of ODEs can be reformulated into

Ė0:2ne−1 =
(
Tl+Th

(
R(η(γ)

)−1
Q(η(γ))

)
·E(γ)

0:2ne−1 (25)

with matrices R(η(γ)) and Q(η(γ)) according to (8), which
vary with γ as they depend on the parameters of the parame-
terized joint density f(x, ẑ; η(γ)) .

C. Initialization and Solution

The system of ODEs in (25) describes the moment vari-
ations caused by homotopy continuation of the Bayesian
measurement update (23) in a very elegant manner. For solving
this system of ODEs, standard numerical solvers based on
the Runge-Kutta method [11] can be employed. The solution
describes a trajectory of the moments E

(γ)
0:2ne−1 depending on

different values of the progression parameter γ. The desired
moments of the posterior density fe(x) are obtained for
γ = 1, i.e., E

(1)
0:2ne−1 comprises the result. As mentioned

above, the moments in E
(1)
0:2ne−1 are unnormalized as merely

the proportional relation (23) was considered. Multiplying
E

(1)
0:2ne−1 with the normalization constant

α , 1/f(ẑ) = 1/E(1)
0 (26)

yields the actual posterior moments.

Please note that the matrix R
(
η(γ)

)
in (25) is singular for

γ = 0. To avoid an inversion of this matrix for γ = 0, an
initialization procedure is proposed that determines an initial
solution E

(∆γ)
0:2ne−1 for the first solution step, with ∆γ being

a small positive step value2. Based on the initial solution
E

(∆γ)
0:2ne−1, the system of ODEs in (25) is then solved in a

standard fashion for γ ∈ [∆γ; 1] .

To determine the initial solution, the moment calcula-
tion (5) is expanded around γ = 0 via a first-order Taylor-
series according to

E
(∆γ)
i ≈ E

(0)
i +∆γ · ∂ E

(γ)
i

∂ηT
·
∂η

∂γ

∣∣∣∣
η=η(γ),γ=0

= Ei
(
ηp
)

+ ∆γ ·

[
∂ Ei

(
η
)

∂η

∣∣∣∣
η=ηp

]T

· ηl (27)

for each moment i, where Ei
(
ηp
)

are the moments of the
predicted Gaussian state xp ∼ fp(x) = N

(
x;µp, (σp)2

)
. The

2In the simulations in Section VI, ∆γ = 10−7 is used.



Algorithm 2 Homotopic Polynomial Gaussian Filter (HPGF)

. Prediction
1: Determine moment vector E0:2np

of posterior state xek−1
by solving (7)

2: Predicted mean: µpk = cpnp
· E0:np

3: Predicted variance:
(σpk)

2
=
(
T · cpnp

)T · E0:2np
− (µpk)

2
+ (σwk )

2

. Measurement Update
4: Determine initial solution according to (27)
5: Solve system of ODEs (25) for γ ∈ [∆γ; 1]
6: Calculate posterior mean µek according to (28)
7: Calculate posterior variance (σek)

2 according to (29)

second summand in (27) is given by (24) for η(γ) = ηp.
This derivative merely depends on the Gaussian prior density
fp(x) . Thus, all higher-order moments in (24) can be deter-
mined via solving the moment recursion in (7).

D. Homotopic Polynomial Gaussian Filter

The novel homotopic polynomial Gaussian filter (HPGF)
for polynomial nonlinearities is summarized in Algorithm 2.
The prediction step coincides with the prediction of the PKF
as proposed in Section IV. The measurement update utilizing
homotopy continuation for calculating the posterior moments
consists of three operations for each time step k: First, initial-
ization as proposed in the previous section. Second, solving the
system of ODEs (25). Finally, calculating the posterior mean
and variance by correcting the ODE solution E

(1)
0:2ne−1 with

the normalization constant (26) according to

µek = α · E(1)
1 , (28)

(σek)
2

= α · E(1)
2 − (µek)

2
, (29)

which yields the desired posterior state estimate xek ∼
fek(xk) = N

(
xk;µek, (σ

e
k)2
)
.

VI. RESULTS

In the following, both Gaussian filters the PKF and the
HPGF proposed in this paper are compared to state-of-the-art
filters by means of numerical simulations.

A. Moment Homotopy Examples

For the first simulation, the polynomial measurement model
(17) is revisited, where now merely the quadratic (order
i = 2) and the cubic (order i = 3) case are considered.
Furthermore, the state estimate x ∼ N (x; 0, 1) is standard
Gaussian distributed, the measurement value is ẑ = 1, and
(σv)

2
= 0.1 is the variance of the measurement noise.

In Table I, the posterior moments calculated by the pro-
posed HPGF and PKF are compared with the true moments
and the results obtained by means of the extended Kalman filter
(EKF). The true moments have been calculated via numerical
integration. It can be seen that the results of the HPGF
coincide with the true moments. Compared with numerical
integration, the HPGF has the benefits of a significantly lower
computational burden and that no integration interval needs

0

1

2

3

0

1

0 1γ →

E1

E1

E0 E0

E2

E2

E3

E3

E4

E5

E
0
:3
→

0 1γ →

E
0
:5
→

(a) (b)

Fig. 2. Trajectories of posterior moments. (a) Quadratic model z = x2 +v.
(b) Cubic model z = x3 + v.

to be determined. In Fig. 2, the trajectories of the posterior
moments resulting from the homotopy continuation are shown.
It can be seen how the moments of the prior Gaussian are
transformed into the true posterior moments.

EKF and PKF both rely on the joint Gaussian assumption.
Thus, the moments of both filters differ significantly from the
true moments (see Table I). As discussed in Section IV-E,
for i = 2 no update of the state estimate can be performed.
For the cubic case, however, an update should be available,
which is true for the PKF. The EKF, however, suffers from
the linearization, which results in a zero Kalman gain. Thus,
no update is performed at all. This example clearly shows the
benefits of avoiding the joint Gaussian assumption.

B. Chaotic Synchronization

In this example, the polynomial system model

xk+1 = T4(xk) + wk (30)

as used in [8] is considered, where Ti(x) = 2x · Ti−1(x) −
Ti−2(x) for i = 2, 3, . . . is the ith Chebyshev polynomial,
with T0(x) = 1 and T1(x) = x. It is known that models as
in (30) generate chaotic sequences [12], which is of practical
use in securing communication systems. The true initial state
x0 a time step k = 0 is assumed to be Gaussian with mean
µx0 = 0.3 and variance (σx0 )

2
= 0.25 .

At first, a linear measurement model

zk = xk + vk (31)

is employed, with measurement noise variance (σv)
2

= 10−2 ·
(σw)

2 and system noise variance being (σw)
2

= 10−2 (high
noise) or (σw)

2
= 10−3 (low noise). As the measurement

model is linear, the joint Gaussian assumption is correct.
Thus, the HPGF does not need to be considered here. PKF
is compared against EKF, unscented Kalman filter (UKF), and

TABLE I. COMPARISON OF THE POSTERIOR MOMENTS CALCULATED
VIA DIFFERENT APPROACHES FOR THE QUADRATIC AND CUBIC MODEL.

Quadratic Cubic
True HPGF EKF PKF True HPGF EKF PKF

E0 0.2664 0.2664 – – 0.0932 0.0932 – –
E1 0.0 0.0 0.0 0.0 0.9113 0.9113 0.0 0.1987
E2 0.8820 0.8820 1.0 1.0 0.8760 0.8760 1.0 0.4434
E3 0.0 0.0 – – 0.8526 0.8525 – –
E4 – – – – 0.8442 0.8442 – –
E5 – – – – 0.8457 0.8456 – –
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Fig. 3. State trajectory (black, solid line) and the estimates of (a) HPGF and
(b) PF together with the corresponding 2-sigma confidence regions.

a particle filter (PF) with systematic resampling [13] and 500
samples. The latter is the only non-Gaussian filter. For all
filters, 50 Monte Carlo simulation runs with identical noise
sequences are performed, where the estimates are calculated
for 50 time steps. As performance indicators, the root mean
square error (rmse), the normalized estimation error squared
(nees), and the runtime for 50 time steps are employed.

In Table II, the average rmse, nees, and runtime over
all Monte Carlo runs are listed for all filters and for both
noise cases. For high noise, the proposed PKF outperforms all
Gaussian filters in terms of rmse and nees, i.e., its estimates
are closest to the true system state (low rmse) and at the
same time the estimates are not overly confident (low nees).
Furthermore, the matrix-vector terms proposed for the PKF
allow for a runtime being close to the EKF, which is known
to be the fastest Gaussian filter.

For the low noise case, UKF performs best in terms of
estimation error, but PKF is very close to it. PF occasionally
suffers from particle depletion, i.e., most of the particles
converge towards the same state, which coincides with an
overconfident estimate and thus an exceedingly high nees
value. Even significantly increasing the number of particles or
using different resampling techniques yields no improvement.

If a cubic measurement model zk =
x3

k

20 + vk with
measurement noise vk ∼ N

(
vk; 0, 10−5

)
instead of the linear

model (31) is utilized, it turns out that all Gaussian filters
relying on the joint Gaussian assumption diverge. The HPGF,
however, is able to provide valid estimates. In Fig. 3(a), an
exemplary state trajectory is depicted. The estimates of HPGF
accurately follow the true state. Furthermore, the true state is
always within the 2-sigma confidence region of the estimates.

TABLE II. AVERAGE RMSE, NEES, AND RUNTIME FOR THE CHAOTIC
SYSTEM MODEL (30) AND THE LINEAR MEASUREMENT MODEL (31).

σ2
w = 10−2 σ2

w = 10−3

EKF UKF PF PKF EKF UKF PF PKF
rmse 0.410 0.336 0.292 0.316 0.148 0.118 0.268 0.118
nees 4.737 1.550 1.168 1.041 7.279 1.110 – 1.129
time 0.016 0.038 0.109 0.017 0.017 0.037 0.102 0.018

The result of the PF depicted in Fig. 3(b) is less accurate and
shows sample depletion from time step k = 20 to k = 27.

VII. CONCLUSION AND FUTURE WORK

Two methods for the efficient calculation of moments have
been introduced in this paper. The first method named polyno-
mial Kalman filter (PKF) efficiently calculates the moments of
a polynomial mapping of a Gaussian random variable. When
applied to the prediction step, the moment calculation is exact.
For the filter step, this method leads to a superior estimation
performance compared to existing Gaussian filters. However,
the typical additional Gaussian assumption for the joint density
of state and measurement is required that can cause highly
inaccurate or even diverging estimates. Hence, in order to avoid
this assumption, a second method named homotopic polyno-
mial Gaussian filter (HPGF) for the almost exact calculation
of the posterior moments in the filter step is introduced. This
method is based on a homotopy continuation for polynomial
nonlinearities. Combining both methods results in a Gaussian
assumed density filter for polynomial nonlinearities that can
compete even with non-Gaussian filters.

Future work is devoted to extend the proposed Gaussian
filters to the multi-dimensional case. Furthermore, resolving
the second limitation mentioned at the end of Section IV-E
allows an extension towards a full exponential filter.
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