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Abstract—In this paper, we introduce a novel approach for
scheduled tracking of a moving target based on bearings-only
sensors. Unlike classical approaches that are typically based on
the extended or unscented Kalman filter, we rely on circular
statistics to describe probability distributions for angular mea-
surements more accurately. As the energy available to sensors is
limited in many scenarios, we introduce a scheduling algorithm
that selects a subset of two sensors to be active at any given
time step while minimizing the uncertainty of the state estimate.
This is done by anticipating possible future measurements. We
evaluate the proposed method in simulations and compare it
to an UKF-based solution. Our evaluation demonstrates the
superiority of the presented approach, particularly when high
measurement uncertainty makes consideration of the circular
geometry necessary.

I. INTRODUCTION

Bearings-only sensors present a typical application for
nonlinear estimation techniques. This sensor type appears in
many real-world systems, such as certain passive radars, which
might be either stationary or mobile. The need for tracking
based solely on angular measurements arises when no distance
information is given or when the given distance information
is discarded due to high noise. A network of such angular
sensors can be used in order to optimize estimation quality by
performing several measurements simultaneously. Often such
sensors use an autonomous and limited power supply, which
limits the number of possible measurements. This scenario
involves two important algorithmic problems. First, it is nec-
essary to fuse prior knowledge and measurements into a good
estimate of the true target position. Second, a measurement
control sequence has to be found in order to optimally schedule
the measurements optimizing the estimation quality, while
reducing energy consumption.

Consideration of noise in angular measurements is usually
based on a Gaussian assumption. This is particularly the case,
when using well-established nonlinear estimation techniques
such as the extended Kalman filter (EKF) or the unscented
Kalman filter (UKF) [1]. The motivation of the widespread use
of the normal distribution involves the central limit theorem.
That is, the distribution of a renormalized sum of i.i.d. random
variables with finite variance converges to a normally dis-
tributed random variable. This theorem makes the assumption
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Fig. 1: In our considered scenario, only two of the sensors
(depicted as blue dots) are measuring simultaneously. The
target moves along a trajectory simulated using a constant
velocity model.

of Gaussian noise in many applications plausible. However,
it does not hold in a circular setting, because the normal
distribution is defined on R and thus, it is not restricted to
the circle. In estimation problems involving large uncertainty,
this approximation might yield unfeasible results, because the
periodic nature of the uncertainty is not taken into account
by the normal distribution. Thus, in the case of bearings-
only measurements a better performance can be achieved by
considering probability distributions defined on the circle.

In this paper, we consider a scenario of multiple stationary
bearings-only sensors in the Euclidean plane, which are used
to track a moving object (see Fig. 1) and yield highly uncertain
measurements. In order to reduce the number of measure-
ments, the scheduler needs to choose those two sensors in each
time step that minimize the expected uncertainty of the system
state averaged over a given pre-defined time horizon. Circular
statistics are used for modeling the measurement noise of the
angular sensors. This is done by a deterministic approximation



with a mixture of Dirac delta components, which outperforms
approaches approximating the Gaussian distribution, particu-
larly for very noisy sensors. The measurement uncertainty of
a certain combination of sensors depends on the true system
state. Thus, future measurements need to be predicted within
the scheduling process. A schedule needs to be generated at
each time step.

A. Related Work

Results related to this work originate from three areas of
research. First, some recent results were made related to the
methodology used in this paper. This involves both, recursive
filtering of angular data based on directional statistics and
deterministic approximation of probability distributions by
a mixture of Dirac delta components. Second, there exists
a broad discussion and research on signal processing and
estimation based on bearings-only sensors. Finally, the prob-
lem of sensor scheduling and resource management in sensor
networks is broadly investigated.

A comprehensive treatment of the field of circular and direc-
tional statistics is given in the books by Jammalamadaka and
Sengupta [2] and by Mardia and Jupp [3]. They describe how
statistical inference in a circular setting differs from classical
approaches. Applying results from directional statistics for de-
veloping a recursive filter was done in [4], where a filter based
on the von Mises distribution is derived. Later, in [5] a filter
is proposed, which is based on matching the von Mises and
the wrapped normal distribution and approximating them by a
mixture of three Dirac delta components. Such approximations
have already been investigated for the Gaussian distribution in
[6], [7], and [8].

Several different approaches are considered in recent lit-
erature on bearings-only tracking. In [9], a sliced Gaussian
mixture based filter is applied to cooperative passive target
tracking. A maximum-likelihood approach to bearings-only
tracking is given in [10]. In [11], multiple switching models
are considered for target dynamics. Discussions of shifted
Rayleigh and filters particle filters are given in [12], [13].
The latter suffer from the curse of dimensionality in high
dimensional state spaces. A further analysis of bearings-only
tracking can also be found in [14], [15].

The literature on sensor scheduling can be divided into
two groups. First, linear estimation problems are considered,
where system and measurement noise are Gaussian. In this
situation, Kalman filters are applied for optimal estimation.
Furthermore, the uncertainty of the estimate does not depend
on the actual measurements, thus the schedule can be pre-
calculated offline. Some of the works related to this approach
are [16], [17], [18]. Second, scheduling scenarios involving
nonlinear estimation problems are considered. Thus, it can
not be generally assumed that the uncertainty of the estimate
does not depend on the measurements. In this situation,
approaches based on Partially Observable Markov Decision
Processes (POMDPs) are commonly used. Literature involving
scheduling and control of bearings-only measurement systems
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Fig. 2: Density of two wrapped normal distributions with the
same mean and different dispersion parameters σ. The upper
density has σ = 0.8 and the lower has σ = 1.

includes [19], [20], [21] and is usually based on a Gaussian
distribution assumption at some point, which does not take the
circular nature of angular data into account.

B. Key Idea and Outline

In our work, the moving object that needs to be tracked is
described by a linear constant velocity model with Gaussian
system noise. We propose modeling the measurement noise
of the sensors with the wrapped normal distribution. This
distribution is defined on the SO(2) (the group of rotations in
R2) and appears as a limit distribution for a circular central
limit theorem. A method for approximating the wrapped
normal distribution by a mixture of Dirac delta components
is proposed. This is used to fuse the measurements of two
sensors into a joint measurement of the true object position.
This new joint measurement is computed by a combination of
the earlier computed deterministic samples of the sensor noise
from each participating sensor. The mean and covariance of
this joint measurement are computed and used for a Kalman
Filter measurement update.

The scheduling algorithm is based on predicting possible
future measurements based on the system model. It computes
the uncertainty of a possible measurement for each considered
sensor combination and uses this for computing the uncertainty



after a possible measurement update. For each possible mea-
surement sequence the traces of the estimated covariance after
each anticipated update step are added up. This comes down
to a tree search, which is optimized by a classical branch and
bound technique.

In the next section, we present some mathematical results
from directional statistics. Particularly, the wrapped normal
distribution and a deterministic Dirac mixture approximation
based on circular moment matching are introduced. In Sec. III,
the estimation and scheduling process is derived. The method
used for processing and fusing the measurements and the
branch and bound based algorithm for scheduling the sensors
is presented. A comparison to a UKF based approach is given
in Sec. IV. The work is concluded in Sec. V.

II. CIRCULAR STATISTICS AND THE
WRAPPED NORMAL DISTRIBUTION

The wrapped normal distribution is the circular equivalent
of the normal distribution. As the name suggests, it is obtained
by wrapping the probability density of the normal distribution
around the interval [0, 2π). The importance of this distribution
is due to the fact that it appears as a limit distribution
for certain circular random variables. We will present some
properties of the wrapped normal distribution and a method
for deterministic Dirac mixture approximation of a wrapped
normal random variable.

A. Wrapped Normal Distribution

Definition 1. The probability distribution defined by the pdf

f(θ) =
1

σ
√

2π

∞∑
k=−∞

exp

(
−(θ − µ+ 2πk)

2σ2

)
on [0, 2π) with parameters µ ∈ [0, 2π) and σ ∈ R+ is called
wrapped normal distribution. We will denote it by WN(µ, σ).

The parameters of this distribution have a similar inter-
pretation as in the classical Euclidean case, that is µ is a
location parameter and σ is a dispersion parameter. However,
it is important to note that in general, the expectation value is
given by µ, but the covariance is not given by σ. Examples
for wrapped normal probability densities are shown in Fig. 2.
In most applications involving circular random variables the
consideration of classical moments is not meaningful. Usually
one considers circular moments on the unit disk in the complex
plane. The n-th circular moment is defined by

E
(
einX

)
= einµ−n

2σ2/2 ∈ C ,

where X ∼WN(µ, σ).
A normal random variable X can be transformed into a

wrapped normal random variable by computing X mod 2π.
This approach can be used for motivating a central limit type
theorem for the circle [2]. Consider i.i.d. random variables θi
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Fig. 3: Kullback-Leibler divergence when approximating a
Wrapped-Normal distribution (defined on [0, 2π)) having
mean π and dispersion parameter σ with a one dimensional
normal distribution with same first and second moments.

defined on [0, 2π) with Var(θi) = 1 and E(θi) = π, then

Sn :=
1√
n

n∑
i=1

(θi − π)
d−→X , n→∞ ,

where d−→ denotes convergence in distribution and X ∼
N (0, 1). Thus

Sn mod 2π
d−→WN(0, 1) .

Fig. 3 shows the approximation error made (in terms of
Kullback-Leibler divergence) when a wrapped normal distri-
bution is approximated by a normal distribution with same
first and second moment, when the mean is placed optimally.

B. Dirac Mixture Approximation of Wrapped Normal Distri-
bution

Dirac mixture approximation of wrapped normal distri-
butions is based on moment matching as described in [5].
The WN(µ, σ) distribution is approximated by a symmetric
wrapped Dirac mixture consisting of 2k + 1 components. To
describe this distribution, k+ 1 parameters are needed, which
are denoted by µ, α1, . . . αk ∈ [0, 2π). Thus, we obtain

fd(θ) =
δ(θ − µ)

2k + 1
+

k∑
i=0

δ(θ − (µ+ αi))

2k + 1

+

k∑
i=0

δ(θ − (µ− αi))
2k + 1

.

Matching circular moments of both distributions yields

exp

(
inµ− n2σ2

2

)
=

exp(inµ)

2k + 1

+

k∑
i=0

exp(in(µ+ αi))

2k + 1

+

k∑
i=0

exp(in(µ− αi))
2k + 1

.



In the case of k = 1, we match the first circular moment
(n = 1) and solve for α1

3

2
exp

(
−σ

2

2

)
− 1

2
= cos(α1) .

This yields

α1 = arccos

(
3

2
exp

(
−n

2σ2

2

)
− 1

2

)
. (1)

In contrast to the UKF, which samples the normal distribution,
the presented approximation considers the circular nature of
angular data. It can also be generalized to a higher number of
samples for increasing estimation accuracy.

III. SCHEDULING BEARINGS-ONLY SENSORS

The proposed sensor scheduling scheme reduces the number
of measurements by using only two sensors at each time step.
This is done by considering the estimated covariance of the
tracked object after a measurement update, which requires
a prediction of possible measurements and their respective
covariances. The estimation itself is based on sampling the
sensor noise deterministically and thus, predicting possible
target positions in the Euclidean plane. The probabilistic model
describing the sensor noise is based on the wrapped normal
distribution.

A. System Model and the Prediction Step

The movements of the tracked object are described by a
constant velocity model. That is, the system state is given by

xt =

(
p
ṗ

)
,

where p ∈ R2 is the position of the tracked object and ṗ its
velocity making xt a four dimensional state vector. The system
dynamics are described by

xt+1 =

(
I2 ∆t · I2
0 I2

)
︸ ︷︷ ︸

=:A

xt + wt .

where I2 is a 2 × 2 identity matrix and ∆t > 0 denotes the
duration of a time step. The system noise is assumed to be
Gaussian, that is wt ∼ N (0,R) with noise covariance R. As
usually the filtered estimate of the true system state is denoted
by xet and its uncertainty is denoted by Ce

t . Analogously xpt
and Cp

t are used to denote the system state after the prediction
step and the corresponding covariance. The prediction step is
carried out using the classical Kalman filter formulas

xpt+1 =Axet ,

Cp
t+1 =ACe

tA
T + R .

Input: Planning horizon T ; Bound for costs b;
Current state estimate xet ,C

e
t ;

Output: Schedule r; Cost c

[xpt+1, Cp
t+1]← predict(xet ,C

e
t );

// Predict measurements of xpt+1.
α← anticipateMeasurementAngles(xpt+1);

// Lowest cost so far
c←∞;

// Try all sensor combinations
foreach i, j ∈ {1, . . . ,m}, i 6= j do

// Compute Euclidean measurement
[zt+1Rt+1]← joinMeasurements(i, j, α);
[xet+1, Ce

t+1]← update(xpt ,C
p
t , zt+1,Rt+1);

v ← tr(Ce
t+1);

if v ≤ b and T = 1 then
// Only one time step left
c← v;
b← v;
r ← (i, j)T ;

else if v ≤ b and T > 1 then
// Calculate schedule recursively
[s, d]← schedule(T − 1, b− v, xet+1,C

e
t+1);

if d <∞ then
c← v + d;
b← c;
r ← [(i, j)T s];

end
end

end

Fig. 4: Algorithm for the scheduler.

B. Sensor Model and Measurement Update

We consider m sensors measuring true bearings, that is an
angle relative to the north pole of a map. At each time step,
two of this n sensors perform a measurement. Furthermore,
the sensors are assumed to be noisy. Thus

αi,t = hi(xt) + ωi,t

yields the angle between the sensor i ∈ {1, . . . ,m} and the
target relatively to the north pole. The noise ωi,t follows a
wrapped normal distribution, that is ωi,t ∼ WN(0, σi). The
sensors are stationary and their positions are known exactly.
They are given by the columns of the matrix

S = (s1 . . . sm) .

In this setting, two operations are of interest. First, trans-
forming measurements of two sensors into a position on the
Euclidean plane, which will be used when measurements are
processed. Second, predicting the measurement of a sensor,
when the position is known, which will be necessary during
the scheduling procedure.



The overall strategy for the measurement update step is
as follows. In the first step, the noise density of the mea-
suring sensors is approximated by a mixture of Dirac delta
components in a deterministic way. This is done by (1). The
approximated densities are placed around the measurements
of the respective sensors and can be interpreted as uncertainty
about the true measurement source. Each Dirac component of
a measuring sensor is combined with each Dirac component of
the other measuring sensor into a coordinate on the Euclidean
plane. Thus, a sample of possible measurement sources is
obtained. Finally, the mean and covariance of this sample
is computed and it is used as input for a Kalman filter
measurement update.

After the active sensors i, j have measured αi,t and αj,t,
these measurements are transformed into directional unit vec-
tors according to

ei,t =

(
cos(αi,t)
sin(αi,t)

)
, ej,t =

(
cos(αj,t)
sin(αj,t)

)
.

For finding the measurement source on the Euclidean plane,
it is necessary to compute at, bt ∈ R such that s1 + ate1 =
s2 + bte2 Thus, we define the matrix E = (−e1, e2). Using
this definition at and bt can be computed by(

at
bt

)
= E−1(s1 − s2) .

Let y
t

denote the joined measurement, that is

y
t

:= si + atei,t = sj + btej,t . (2)

Now, we have

f(y
t
) =

∫ 2π

0

∫ 2π

0

f(y, αi,t, αj,t) dαi,t dαj,t

=

∫ 2π

0

∫ 2π

0

f(y |αi,t, αj,t) · f(αi,t, αj,t) dαi,t dαj,t .

In order to approximate f(y
t
) by a normal distribution, we

approximate f(αi,t, αj,t) by a mixture of Dirac delta compo-
nents. For each Dirac pair (αi,t, αj,t), we compute a possible
value for y

t
using (2). That is, we obtain nine deterministic

samples representing possible values of y
t
. The mean of these

samples is taken as our joined measurement y
t

and their
empirical covariance is taken as our predicted uncertainty of
the joined measurement Qp

t . Be aware that, while assuming a
wrapped normal noise for our sensors, we assume a Gaussian
uncertainty for the measured position of the tracked object.
This approach considers the circular nature of sensor noise
for the computation of y

t
and Qp

t , while simultaneously
preserving the elegance of a Gaussian uncertainty model. After
this transformation, a linear measurement equation can be used

y
t

=

(
1 0 0 0
0 1 0 0

)
︸ ︷︷ ︸

=:H

xpt + vt ,
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Fig. 5: Example trajectories.

where vt ∼ N (0,Qp
t ). Now, the Kalman filter can be used for

the measurement update step

zt =y
t
−Hxpt , Pt =HCp

tH
T + Qp

t ,

Kt =Cp
tH

T
t P
−1
t , xet =xpt + Ktzt ,

Ce
t =(I−KtH)Cp

t .

C. Scheduling Bearings-Only Sensors

Scheduling our sensors is based on a branch-and-bound
technique. The scheduling algorithm is described in Fig. 4,
where the system model and sensor properties (i.e., the posi-
tions S and the noises σi) are assumed to be global variables
and known to every subroutine. It predicts a future position and
the measurements of this position including its uncertainties.
Furthermore, a filter step is simulated. Anticipating a measure-
ment of sensor j, when the true position is x = (x(1), x(2))T ,
is done by computing

atan2(s
(2)
j − x

(2), s
(2)
j − x

(2)) .

The algorithm solves

rt = arg min
rt

(
T∑
i=1

E(tr(Ce
t+i) | rt)

)
,

where rt is a sensor schedule for a planning horizon T created
at time step t and the expectation is taken over possible future
system states.

IV. SIMULATIONS

To evaluate the proposed algorithm we have performed
several simulations. All distances are given in kilometers, all
time intervals in seconds and all angles in radians.

For comparison, we implemented an unscented Kalman
filter (UKF) [1] to perform the nonlinear measurement update.
The UKF is based on the measurement equation(
αi,t
αj,t

)
=

(
atan2(s

(2)
i − x

(2)
t , s

(1)
i − x

(1)
t ) + vi,t) mod 2π

atan2(s
(2)
j − x

(2)
t , s

(1)
j − x

(1)
t ) + vj,t) mod 2π

)
if sensor i and j are selected in time step t. In order to avoid
issues when dealing with angles near the discontinuity between
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Fig. 7: Boxplots of the RMSE.
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Fig. 8: Mean of the RMSE.
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Fig. 6: Example schedule. A dot at time step k and sensor i
means that sensor i was turned on at time step k.

0 and 2π, we modify the UKF by repositioning the sample
points accordingly.

We consider four sensors with positions

s1 =

(
1

1.1

)
, s2 =

(
−1
1.1

)
, s3 =

(
−1
−1

)
, s4 =

(
0
0

)
.

To model the behavior of the system, a constant velocity model
with system noise R = diag(0.0012, 0.0012, 0.0012, 0.0012)

is used. The true initial state is given by (−0.7, 0, 0.01, 0)T .
This yields trajectories as depicted in Fig. 5.

The mean of the initial estimate is equal to the true initial
state an the initial covariance is equal to the covariance of
the system noise. The measurement uncertainty is given by
σi = 2 for all i = 1, . . . , 4. When such uncertainties are
involved, approaches considering the circular nature of angular
data promise better results than filters relying on the Gaussian
distribution. We use the same scheduler with a planning
horizon of two time steps for both filters. A schedule could
look like the example in Fig. 6.

We performed 100 Monte Carlo runs to evaluate our filter.
The root mean square error (RMSE) of the estimated position
and velocity is given in Fig. 7. The lower and upper edges
of each box are located at the first and third quartile of the
simulation outcomes. It is obvious from these boxplots that our
filter outperforms the UKF. If we plot the error over time, we
can see that the UKF displays a bad performance throughout
the simulation (Fig. 8 and Fig. 9).

V. CONCLUSIONS

In this paper, we have presented a novel algorithm for
handling bearings-only measurements based on circular statis-
tics. A deterministic sampling scheme for the wrapped normal
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Fig. 9: Median of the RMSE.

distribution was derived. We showed how this scheme can
be applied to estimate the position and velocity of a moving
object based on scheduled bearings-only measurements. Fur-
thermore, we have presented a sensor scheduling algorithm,
which minimizes the estimation uncertainty while reducing
the energy consumption of the sensors.

In simulations, we have demonstrated the viability of our ap-
proach. A comparison with the UKF shows that the proposed
methods is superior when the measurement uncertainties are
large.

Future work may include the extension to a deterministic
sampling of the wrapped normal distribution with a larger
number of Dirac components.
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