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Abstract — A novel distributed sensor scheduling method
for large-scale sensor networks observing space-time con-
tinuous physical phenomena is introduced. In a first step,
the model of the distributed phenomenon is spatially and
temporally decomposed leading to a linear probabilistic
finite-dimensional model. Based on this representation, the
information gain of sensor measurements is evaluated by
means of the so-called covariance reduction function. For
this reward function, it is shown that the performance of the
greedy sensor scheduling is at least half that of the optimal
scheduling considering long-term effects. This finding is the
key for distributed sensor scheduling, where a central pro-
cessing unit or fusion center is unnecessary, and thus, scal-
ing as well as reliability is ensured. Hence, greedy schedul-
ing in combination with a proposed hierarchical communi-
cation scheme requires only local sensor information and
communication.

Keywords: Sensor scheduling, distributed estimation,
Kalman filter, submodular functions.

1 Introduction

Recent developments in wireless communication and sen-
sor technologies facilitate the usage of large-scale sensor
networks for monitoring space-time continuous physical
phenomena. Examples of such phenomena, i.e., physical
quantities varying in time and space, include temperature
distributions, pollution concentrations, or fluid flows. By
densely deploying large numbers of sensor nodes inside
a phenomenon, these quantities can be cooperatively ac-
quired. Individual sensors, however, are only able to cap-
ture distributed quantities at discrete locations and points of
time. For feasibly quantifying the phenomena not only at
sensor locations and measurement times, a reconstruction
has to be performed. By exploiting background information
in form of a physical model, a model-based reconstruction
[1, 2] approach as stated in Sec. 3 can be employed to com-
pletely estimate a phenomenon, even for a limited number of

discrete measurements. By using Bayesian estimation tech-
niques, this stochastic approach inherently considers noise
and modeling uncertainties.

With a large number of sensors available, the best phe-
nomenon reconstruction is obtained by employing all sen-
sors at each measurement time. However, acquired mea-
surement values have to be exchanged among the nodes. In
wireless networks, this may lead to message collisions and
retransmissions, which unnecessarily deplete the limited en-
ergy resources of the sensor nodes. A possible reduction of
sensor usage improves the overall life-time of a sensor net-
work, while on the other hand, causes estimation accuracy
to decrease. Thus, a trade-off between resource utilization
and estimation quality has to be found, which is addressed
by sensor scheduling. Sensor scheduling, also known as
sensor management, aims at determining an optimal sensor
schedule, i.e., a time sequence of sensor nodes scheduled for
future measurements, to maximize the information gain in
presence of resource restrictions, and therefore can be seen
as some kind of time-multiplexing on the wireless network.

In Sec. 4 of this paper, we consider sensor scheduling as
a stochastic control problem, assuming the monitored phe-
nomenon to be given as a linear stochastic system and as-
suming a covariance-based reward function to be employed
for rating sensor schedules. Then, the optimal schedule can
be determined a priori and independently of actual measure-
ments, which basically is possible by an exhaustive off-line
tree search [3]. However, even for a fixed time horizon N,
this off-line search is NP-hard [4] and thus, in general com-
putationally infeasible. To deal with the computational com-
plexity, approximate algorithms have been proposed in liter-
ature, including pruning techniques [5] and greedy/myopic
algorithms [6, 7, 8], which calculate only a one-step ahead
solution.

Wireless networks of self-sufficient sensor nodes bene-
fit from a flexible network structure, allowing for dynamic
node relocation and network extensions. To fully exploit
this advantage, distributed control and processing schemes



with local operations are favorable over centralized ap-
proaches. Thus, this paper proposes a distributed greedy
sensor selection for model-based phenomenon reconstruc-
tion over a finite time horizon. It is shown that greedy sen-
sor scheduling is well suited for distributed implementation,
as it requires only a minimum amount of computation and
simply relies on local sensor information.

If one sensor per time step is scheduled, a greedy se-
lection furthermore leads to a constant quality approxima-
tion. By using the so-called covariance reduction, a spe-
cific scalar reward function on the covariance of state es-
timates, greedy scheduling rewards can be proven to be at
least half of the optimal solution. This finding, motivated
by the quality bounds stated in [9], extends existing theoret-
ical results in many ways: 1.) the bound holds for dynamic
systems with multivariate states and measurement values,
which is contrary to [9, 7, 10] employing similar variance-
based reward functions for scalar static systems. 2.) Fur-
ther bounds for non-scalar dynamic systems, as the one pro-
posed in [8] for mutual information, are typically computa-
tionally infeasible for high-dimensional state/measurement-
spaces due to calculating matrix determinants. Instead, the
employed covariance reduction reward function utilizes the
computationally cheap trace operation. 3.) Instead of a cen-
tralized realization, this paper further proposes a distributed
greedy sensor scheduling scheme based on hierarchically
structured communication in order to reduce the scheduling
and communication overhead. The effectiveness of the pro-
posed distributed greedy sensor scheduling is demonstrated
via simulation in Sec. 5.

2 Problem Formulation

The main goal is to design a distributed scheduling algo-
rithm for the energy-efficient but accurate reconstruction of
a space-time continuous physical phenomenon via a sensor
network. A large number of such phenomena can be de-
scribed by means of a set of linear partial differential equa-
tions. For simplicity, a one-dimensional diffusion equation
and its solution p(z, t) are used within this paper, given by

2
ap{gi’“ _ .0 g(;’t) — st = L(p(z,8)) = 0, (1)
describing for example the temperature at a certain location
z and time ¢. The known source term is denoted by s(z, t),
the diffusion coefficient by the constant c. As solution do-

main, the interval Q = {z|0 < z < L} is used, assuming
Op(2=0,t)
Oz

the Neumann boundary conditions = gk and

w = g%. To simplify Bayesian estimation, the
partial differential equation is converted into a finite state-
space form. Herein, the phenomenon is characterized by a
linear stochastic discrete-time system model, which repre-
sents arising uncertainties as additive white Gaussian noise.
By incorporating these models within a Kalman filter, the
Riccati equation is obtained, serving as the basis for sensor
scheduling.

Given a set of sensors S and a fixed estimation time hori-
zon N, a sensor schedule Ag.ny—1 = (Ao, A1, .-, An—1)
represents a time sequence of sensor subsets A, C S al-
located for measurements at time step t;. By applying a
sensor schedule, the initial estimation uncertainty, denoted
by the covariance matrix Cf, is reduced to a remaining un-
certainty C%,(Ao.n—1), which reflects the estimation error
for this sensor schedule. Thanks to the linear Gaussian sys-
tem resulting from the conversion, the potential reduction
of the uncertainty by a given sensor schedule can be deter-
mined a priori and independently of actual measurements by
employing a covariance-based reward function V. Sensor
scheduling then aims at finding the optimal schedule

Abnv_1 = arg max V(Aon-1)

0:N—1

that maximizes the reduction of the uncertainty. Con-
sidering computational and energy constraints on sensor
nodes, this paper proposes a greedy/myopic algorithm for
determining approximate schedules ag.y_1 of single sen-
sor nodes «y, per time step. This provably yields schedules
of constant approximation quality compared to the optimal
single-sensor schedule o). i _;-

3 Model-based Reconstruction

In model-based reconstruction [2], techniques for state
estimation are combined with background knowledge about
space-time continuous phenomena. Given in form of a phys-
ical model, this knowledge facilitates a continuous recon-
struction on the basis of discrete space/time measurements.
By converting the physical model into a finite-dimensional
state-space form, the phenomenon can be characterized by
a finite-dimensional stochastic process with linear transition
functions (see Sec. 3.1 and 3.2). Reconstruction can then be
carried out via the well-known Kalman filter (see Sec. 3.3).

3.1 Conversion of Continuous Phenomena

The conversion of the physical model, given as a set
of linear partial differential equations, into a finite state-
space form is achieved by following a numeric methodol-
ogy known as Galerkin formulation [11]. First, the solu-
tion domain is spatially decomposed by employing methods
like the finite-element-method or the finite-spectral method.
Then, the resulting model is temporally discretized. Finally,
the space-time continuous physical phenomenon p(z, tx) is
represented as a finite state vector x;, at discrete time ¢j,.

Spatial Decomposition Using the Galerkin formulation,
the solution p(z,t) of the partial differential equation (1) is
replaced by the finite approximation

Ngos—1

STt @(2) &

Jj=0

ﬁ(zvt) = p(Z,t) )

where Ny, represents the degree of freedom. This ap-
proximation separates the space-dependent analytic shape
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Figure 1: The solution p(z,t) of the partial differential equation is element-wise approximated by the shape functions

®;(2) and scaling coefficient x;(t) for Ngor = 4.

functions ®;(z) from time-dependent scaling factors x;(t).
Fig. 1 illustrates the approximation for piece-wise linear
shape functions. In order to determine the scaling factors
x;(t), a number of conditions has to be set. In the Galerkin
formulation, these conditions aim at minimizing the ap-
proximation residual L(p(z, t)), and therefore are given by
weighted integrals

/Qq)j(z) L(#(z6))dz = 0,¥j € [0,1,..., Naos — 1]

over the solution domain 2. The choice of the set of
shape functions then determines the numeric method em-
ployed in the discretization process, decomposing the solu-
tion domain (2 into disjoint elements (). Finally, the scal-
ing factors x;(t) are collected in the state vector x(t) :
[zo(t), 1 (t), ..., TNy, —1(t)]7. As a result of the spatial
decomposition, the set of ordinary differential equations

M i(t) Mis(t) — eDz(t) + b*(¢)

evolves, characterized by the mass matrix M with M;; =
Jo ®i(2)®;(z)dz and the diffusion matrix D with D;; :=
Jo Mgz(z) Bq)a-jz(z) dz. As detailed in [2], the vector 3(t) repre-
sents the discrete space source term, and b* () summarizes
the applied boundary conditions.

Temporal Discretization Following the spatial decompo-
sition, the resulting model has to be discretized in time,
leading to the desired finite-dimensional state-space model.
Within this paper, implicit discretization methods are pre-
ferred, as they offer unconditional numeric stability. Em-
ploying a Crank-Nicolson discretization [2] leads to a
discrete-time state-space description defined by

(M + 05AtD)"' (M - 05AtD),
At (M + 05AtD)

Ay
Bk:

where A, represent the system matrix, By denotes the input
matrix, and At is the length of a time step.

3.2 System and Measurement Equation

In state-space form, the physical phenomena are char-
acterized by two equations. The system equation relates

phenomenon states at different points of time, thereby de-
scribing the physical behavior of the phenomenon according
to

Lpyr1 = Ay . + Bk(@k + Qk)a

where w,, is white zero-mean Gaussian noise with covari-
ance C}! subsuming system uncertainties as well as input
noise. The augmented input vector ¢, contains the bound-
ary conditions besides the input values. The measurement
equation relates a measurement ¢, by sensor ay, = i at time
step t; to the phenomenon state x; as

e = Hyzy, + v,

where v} is white zero-mean Gaussian measurement
noise with covariance sz The measurement matrix
H}C [(I)()(Zi), <I>1(zi),..., @Ndof,l(zi)]T is deter-
mined by evaluating the shape functions at location z; of
sensor ¢. To recalculate the phenomenon from an esti-
mated state z;, = [(xx)o, (Tx)1,-- - (Th)Nyop—1] 7 phe-
nomenon values p( z;, ¢ ) are related to the current state via
the output equation

Ndof—l

Yo (@n); @5(z) -

Jj=0

p(zitk) 2

3.3 Reconstruction via Kalman Filter

As conversion result, a linear Gaussian system is ob-
tained. For these systems, the Kalman filter ensures optimal
results in state estimation. By representing the phenomenon
state as Gaussian random vector x,,, this estimator recur-
sively updates the state mean £, and covariance Cf in two
steps. In the prediction step or time update, the system state
is propagated to the next time step ¢x4; according to

AP _ ~e N
Tp = ApZy + Briy

cr., (3)

The filter step or measurement update fuses the propagated
state estimate with the information resulting from a mea-
surement gz of sensor ¢ € S according to

A, C{ AT + B, CYB{ .

o+ (9, — HL 7)),

C? — K, H, C}

j,

Ci

fi(CR)

= = @)



where Kj, = Cf ()" (C" + HL C} (H)T) " de-

notes the Kalman gain for sensor . Combining both update
steps into a single equation allows for compactly character-
izing the evolution of system uncertainty for a sensor s € S
by the recursive discrete-time Riccati equation

ri(Cr) = Ciyli) =

AL CLA[ +ByCYBy — ALK H, CL AL . (5
The evolution of an initial covariance C{ under a sensor
sequence op:ny—1 can then be stated as C% (ao.n—1) =
ro (S (. (CE) ...)). Finally, two important
properties of the Riccati equation are given, originally stated
in [12].

Theorem 1 (Concavity and Monotonicity)

Given positive definite noise matrices C)", the Riccati
equation (5) is concave and monotone. For two positive
semi-definite matrices C,lC and Ci and i € S, monotonicity
displays as relation C;, < C} = r}(Cp,,) 2 7(Ch ),
where C! < C? abbreviates a positive semi-definite matrix
difference C' — C2 = 0.

4 Distributed Sensor Scheduling

A distributed approach to scheduling in a sensor network
is advantageous over a central control and processing struc-
ture for many reasons. It allows to reduce communication
and computational overhead, and improves the flexibility,
reliability, and scalability of the system. In this section, the
performance of a greedy scheduling approximation is exam-
ined and an energy-efficient distributed sensor scheduling
based on greedy sensor selection is proposed.

4.1 Key Idea

As a major design choice, this paper employs a greedy
approach to sensor scheduling, described in Algorithm 1.
Though being an approximate method, a constant factor
bound can be proven for the greedy approach by choosing
a submodular reward function. Furthermore, the greedy ap-
proach reduces the problem of finding a long-term sensor
schedule to an on-line sensor selection per time step. This
by purpose fits a distributed implementation by reducing the
knowledge mutually required by the sensor nodes. In de-
signing an appropriate algorithm, the degree of distribution
determines the information being either acquired by com-
munication or derived from pre-installed knowledge. Here,
two extremes can be distinguished. 1.) Each sensor acts in-
dependently based on the complete knowledge of the impor-
tant measurement parameters of all other sensors, i.e., their
current positions, measurement matrices H, and noises C".
2.) Sensors only have local knowledge of their own impor-
tant parameters. In the first extreme, sensor scheduling can
be performed individually by each sensor, resulting in a high
computational load, whereas the second approach requires a
lot of communication for negotiation. As a trade-off, a dis-
tributed sensor scheduling approach following a hierarchical

Algorithm 1, Greedy Sensor Scheduling.
1: for all time steps ¢, with £ € [0,1,..., N — 1] do
2. forall sensorsi € S do

3 Calculate covariance reduction Vi (i) =
trace( Cf,, — 75 (Cy) ) for sensor i ;
4:  Determine maximum reduction V,"** := Vj(i9) =

max;es( Vi(i)) ;
5:  Schedule best sensor o, := 79 for next measurement:
Qo 1= (aO:k—L Oék) >

selection and communication scheme is proposed, based on
the grouping of sensors into disjoint subsets.

4.2 Reward Function

The reward function is used to judge the quality of the
current state estimate in terms of stochastic uncertainty. For
this purpose, a scalar value is assigned to the current state
covariance, representing the possible reduction of the esti-
mation error. This section introduces a theoretically impor-
tant reward function based on matrix traces.

Covariance Reduction As reward function in greedy sen-
sor scheduling, a scalar measure of the reduction in state co-
variance by a given measurement is chosen. At any time step
i, given a prior covariance Cg, the covariance reduction by

a non-empty sensor subset A = {ag, a1,...,apy-1} C S

is given by

Vi(A) = trace (Cf,, — (A C4 Al +B,CyBYL)).
(6)

The matrix Cf denotes the result of applying k time
update steps (3) on the initial covariance C§ and
Ca:= (M 2(... f2°(CF)...)) abbreviates the
repeated application of M/ measurement updates (4) on C7,
within one time step, using each sensor in 4. At each time
step, a greedy algorithm then chooses the sensor subset re-
sulting in the highest covariance reduction. To account for
multiple measurements at the same time step, a conditioned
covariance reduction is defined. The reduction of covariance
through a sensor subset .4; C S at time step ¢y, conditioned
on the event that at the same time step subset Ag C S was
already used for measurements, is given by

Vk(A1|A0) = Vk(.AlU.Ao) — Vk(Ao) @)

Submodularity A function g(-) mapping sets to real
numbers is submodular if

g(CUA) —g(A) = g(CuUB)—g(B), VB2 A

holds for arbitrary subsets A, B and C. By replacing g(-)
with a reward function for sensor scheduling, submodularity
can be interpreted as the property that by utilizing additional
measurements, the information value of so far unused mea-
surements is reduced. This property serves as a motivation
for using few sensors per time step. In the following, the



submodularity of the covariance reduction reward function
is shown.

Theorem 2 (Submodularity of Covariance Reduction)
The covariance reduction reward function, given by (6), is
submodular.

PROOF. For brevity, this proof omits all time indices. If
only one sensor ¢ € S performs a measurement at an arbi-
trary time step, the conditioned covariance reduction for an
arbitrary sensor subset 4 C S results in

V{i}[A) = V(AU{i}) - V(A)
= trace( AK, H C4 AT) |

where Kf4 abbreviates the Kalman gain based on the co-
variance C 4 and sensor i. The product KHC in general
describes the reduction in variance per measurement up-
date. Following from the monotonicity and concavity of
the Riccati equation stated in Theorem 1, this reduction
is smaller in the sense of a positive semi-definite order-
ing, the smaller the current covariance C is. Since apply-
ing more measurement updates further reduces the prior co-
variance, the covariance reduction of a measurement update
based on a sensor subset becomes smaller with the grow-
ing cardinality of this subset. Hence, for a joint sensor sub-
set C U A the inequality K, H'C 4 = KécUA)HiC(CUA)
holds, which can be easily proven using the Woodbury iden-
tity [13]. As a consequence, the product A (K H'C 4 —
chu 4) H’ Ccua)) AT is positive semi-definite, and thus,
the inequality V({i}|.A) — V({i}|CU.A) > 0 holds,
which can be equivalently recast to

V(CUA)=V(A) > V(CUAU {i}) — V(AU {i}).

By continuously iterating the previous equation over all sen-
sors ¢ € B\ A, the submodularity of the covariance reduc-
tion at a single time step can be proven. (]

Corollary 1 The covariance reduction reward function is
non-decreasing.
PROOF. For all sensor subsets A C C C S holds

V(C)—V(A) = trace (A(C4—Cc)AT) > 0,
because of C4 = Cg . O

Remark 1 These results also hold when replacing the ma-
trix trace in the reward function by the determinant or the
maximum eigenvalue.

Theorem 2 and Corollary 1 allow proving a quality bound
for greedy scheduling in case of static systems or multiple
sensors per time step. As [9] states, the reconstruction qual-
ity resulting in this setting is at least the 1 — 1/e-fold of the
respective optimal schedule. The next section extends these
results to greedy scheduling in dynamic systems, using only
one sensor per time step.

4.3 Greedy Sensor Scheduling

In order to rate the performance of a sensor schedule
Ao.n—_1, that is, a time sequence of sensor subsets A C S,
a reward function considering multiple time steps is re-
quired. Therefore, the multi-step covariance reduction

V(Agn_1) = trace(CZ — C]mV(AO:N—l))

describes the overall reduction in state covariance by a given
sensor sequence as difference between the expected un-
certainty after N prediction steps (3) and the uncertainty
achieved through the sensor sequence. By using this reward
function, a constant approximation quality can be proven for
greedy sensor scheduling, based on the submodularity of the
covariance reduction at each time step.

Theorem 3 (Greedy Sensor Scheduling)

In case of temporally independent measurements, the greedy
Algorithm 1 leads to a schedule of _, of single sensors
with a total covariance reduction that is at least half the
covariance reduction of the optimal schedule ag. 5 _, i.e.,

V(a;:Nfl) S 2- V( ag:Nfl) .

PROOF. In analogy to [8], where NV was set to two and V(- )
was the mutual information objective, it follows

V(agn-1)
(a

)
< V(aO:Nfl’ag:N—l)
(b) X
=V(ag) + V(ag|ag) +
N-1
(V(QZ ‘ as:k—lv ag:kfl) + V(O‘Z ‘ O‘S;k—lv ag:k))
k=1
(¢) .
<V(ad) + V(eg) +
——
<V(af)
N-1
Yo (Viaflad, ) + Viaglad, )

< V(ai\(xg:kil)
@ ,
< 2-V(agy_1),

where (a) results from Corollary 1, (b) and (d) follow from
(7), and (c) results from the submodularity of V(- ). O

4.4 Distributed Scheduling Scheme

In order to cope with the distributed nature of both the
phenomenon and the sensor network, implementing the
greedy sensor scheduling listed in Algorithm 1 as a dis-
tributed algorithm is advantageous. Without a central pro-
cessing station, the central communication overhead is omit-
ted, and no single point of failure exists. In distributed
scheduling, each sensor only knows its own measurement
parameters and can calculate its own potential covariance re-
duction independently from other sensors for each time step.
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Figure 2: (a) Hierarchical communication scheme for dis-
tributed greedy sensor scheduling. Colored boxes and
nodes indicate sub-domains and representative nodes, re-
spectively. (b) Hierarchical sensor selection strategy for a
one-dimensional phenomenon.

Thus, the computational load is fairly distributed among all
sensor nodes. Furthermore, the sensor network can easily
be adapted to changes in its topology, since each sensor only
needs to update its own position data. A distributed schedul-
ing approach hence allows for a flexible and even mobile
network.

To deal with the remaining communication overhead re-
sulting from information exchange during distributed sensor
selection, a hierarchical, tree-like communication scheme is
proposed. This scheme employs directed communication,
where all communication is directed towards the center of
the solution domain €2 in order to avoid energy-consuming
broadcasts. For this purpose, the global solution domain
) is hierarchically divided in so-called sub-domains (see
Fig. 2 (a)). Within each sub-domain, one of the contained
sensor nodes acts as representative. Communication in and
between sub-domains for scheduling purposes is carried out
over representative sensor nodes only. It is important to
note that the selection of appropriate sub-domains and rep-
resentative sensor nodes is outside the scope of this paper
and thus, devoted to future work. A straightforward way
for sub-domain selection would be to exploit the disjoint
elements ), used for the conversion in Section 3.1. For
representative nodes, selecting sensor nodes that are next to
the center of €2 is a straightforward choice.

For determining the next sensor node to perform a mea-
surement, at first the individually calculated covariance re-
ductions of the sensor nodes are compared within the sub-
domains on the lowest level (blue sub-domains in Fig-
ure 2 (a)). The best of all low-level decisions is then se-
lected on the next higher sub-domain (red sub-domains in
Figure 2 (a)). This is repeated until the selection of the
best sensor for the global solution domain 2 (green do-
main in Figure 2 (a)) is performed. Obviously, this proce-
dure guarantees the previously proven bound of greedy sen-
sor scheduling and is fully distributed, as the best sensor is
scheduled for measurement in a scalable manner involving
only local computation and communication.

Completing the distributed approach, the scheduled sen-
sor node performs a central filter step (4) and time up-
date (3). The updated state estimate is then propagated to
all sensor nodes by exploiting the proposed communication
tree in reversed order. According to [14], this distributed re-
construction followed by a propagation of the updated state
estimate is advantageous over a distribution of the measure-
ment value itself by improved robustness and efficiency.

4.5 Possible Extensions

The greedy sensor selection can be approximated by a
hierarchical greedy selection to further reduce the computa-
tional and communication load. This strategy constitutes a
compromise between the two extremes stated in Section 4.1.
For this purpose, individual sensors are grouped into con-
tinuous disjoint subsets €24, which then become subject to
selection on behalf of the contained nodes. For choosing
between groups, an integral objective function can be em-
ployed, approximating the potential covariance reduction of
its sensors by an easy-to-compute measure. Here, the cur-
rent total variance GV(Q,) = ZZGQQVar(ﬁ(z, tx)) over the
corresponding sub-domain €2, is utilized.

The hierarchical sensor selection then comprises two
phases, depicted in Figure 2 (b). In a high-level selection,
the best sensor group is chosen according to the approxi-
mate measure ({25 in Figure 2 (b)). In the second phase, the
low-level selection determines the best sensor of the chosen
group by the presented greedy algorithm. Hence, individual
covariance reductions only have to be calculated for the sen-
sors of the selected group and communicated between them,
omitting all other sensors. This reduces the computational
load, as well as the main part of communication activities,
by the number of defined groups. In both phases, the afore-
mentioned tree-like communication scheme applies. By em-
ploying an approximate measure, the quality bound (3) for
greedy scheduling is no longer valid for the hierarchical
greedy scheduling approach. Finding a similar bound for
this approach is devoted to future research.

5 Simulation Results

As proof of concept, this section presents performance
results for the proposed greedy and hierarchical greedy sen-
sor selection strategies. Here, the greedy strategies are com-
pared against 1.) an optimal schedule resulting from exhaus-
tive tree-search, 2.) an approximate schedule arising from a
model-predictive control approach and 3.) a randomly se-
lected schedule. For simulating a temperature distribution,
the one-dimensional diffusion equation (1), constrained by
Neumann boundary conditions, is decomposed by the finite-
spectral method into five elements with seven polynomials
each. After a Crank-Nicolson time discretization, the result-
ing state-space model characterizes the phenomenon state
by z; € R3L.

For quantifying the scheduling performance, the recon-
structed phenomenon is discretely represented as random



Greedy Optimal
Set || Quality in K? | Time || Quality in K®> | Time
1 3.699¢+8 0.06 s 3.298e+8 73s
2 4.663e+8 0.05s 3.992e+8 135

Table 1: Reconstruction quality and runtime for optimal and
greedy sensor scheduling approaches over a time horizon
N = 3, simulated with two different sensor sets.

vector p, at equidistant sampling points z;, and the recon-
struction quality g(p, ) is given by the trace of Cov(p, ).
Depending merely on the sampling points, a discrete sam-
pling matrix ( @, (zz))” =: ®, can be determined a priori,
with p, = @,z and Cov(p,) = ®.Cj}, &7 according
to (2). Determining the best sensor on the basis of P, in-
stead of z, increases greedy reconstruction quality. By ex-
ploiting trace properties, it holds g(p, ) = trace(Cj, ®*),
where ®* = ®7® is of the same dimensions as C¥ and
can be calculated in advance. As can be easily proven, the
quality bound for greedy scheduling (3) still holds for this
extension.

For the simulation, the initial estimation uncertainty C§ is
defined by a diagonal matrix with only certain areas set to a
non-zero variance value of 101°, This initial setting requires
and rewards adaptation in scheduling. The input noise is
given as C}Y = I, with a further additive system uncertainty
of I. The measurement noise is modeled as C,Zl = L For
evaluating the impact of node density and node location, two
differing sets of sensors are utilized to simulate a sensor net-
work. Sensor set 1 consists of 41 nodes, placed equidistantly
over the given sample domain. Set 2 consists of 23 ran-
domly placed sensor nodes. As simulation software, Mat-
lab_R2008a®) is used on an Intel® Core™ 2 Duo with 2.2
GHz. In the following, the given reconstruction quality de-
notes the average measured quality per phenomenon sam-
pling point, i.e., the average variance over the elements of
p,.in KelvinZ.

At first, the performance of greedy scheduling over a
fixed time horizon of length N = 3 is evaluated. Here, the
greedy schedule is compared to an optimal sensor schedule,
determined by exhaustively searching the tree of all possible
sensor schedules ag.y—1 for the one leading to a maximum
reduction in covariance. Table 1 displays the resulting re-
construction quality and runtime for both sensor sets. The
greedy approach thereby performs in close range to the opti-
mal reconstruction quality, by far tighter than the theoretical
bound (3). At the same time, the greedy approach is much
less time consuming, which also can be seen as a demonstra-
tion of energy efficiency of the greedy scheduling approach,
if computations for scheduling are considered only.

Another common approach to sensor scheduling is known
as receding horizon control, or model-predictive con-
trol [15]. Within this approximate approach, the estimation
time horizon NN is reduced to a finite scheduling horizon
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Figure 3: Performance of the greedy scheduling strategies
compared to receding horizon control and an exemplary
random sensor selection.

P < N, and open-loop feedback scheduling is employed
for sensor selection. Fig. 3(a) depicts the temporal evolution
of reconstruction quality for the proposed greedy scheduling
strategies compared to receding horizon control with P = 3.
As can be seen, both greedy strategies offer a promising
performance, exceeding the receding horizon approach in
average. In runtime, and consequently energy consumption,
the greedy strategies with 0.5 seconds outperform the reced-
ing horizon approach with 1342 seconds by four orders of
magnitude.

As a final demonstration of greedy scheduling perfor-
mance, several bounds on absolute reconstruction quality
are considered. Fig. 3(b) depicts the number of time steps
required by each scheduling approach to reach the given re-
construction quality. It can be seen that the greedy schedul-
ing approaches again perform at least as good as the more
complex receding horizon scheduling. Moreover, only the
greedy approaches are able to converge below an average
variance of 2.5 K2.

6 Conclusions and Future Work

When performing sensor scheduling for model-based re-
construction of space-time continuous physical phenomena,



one has to balance between computation and communica-
tion costs. Determining optimal sensor schedules requires
global knowledge. Furthermore, the consideration of long-
term effects when performing scheduling in a distributed
fashion is impractical from a computation and communica-
tion perspective. Thanks to the following novelties, merely
local computation and communication is required, which in
turn results in energy savings.

1. The proposed greedy scheduling algorithm marks a
practical way towards distributed scheduling and re-
construction, since merely a fraction of the computa-
tions compared to non-myopic algorithms is required.

2. Though being suboptimal, a tight bound on the per-
formance of the proposed greedy scheduling algorithm
compared to the optimal solution can be guaranteed
for the employed covariance reduction reward func-
tion. This extends existing findings to dynamic systems
and multivariate states for this specific reward function.

3. With the proposed hierarchical communication
scheme, sensor nodes merely require local informa-
tion for determining the next sensor. This decision
is achieved by comparing individually determined
covariance reductions and by communicating these
scheduling results between neighboring domains.

4. Thanks to the model-based reconstruction approach,
physical background knowledge about the considered
space-time continuous phenomenon can be systemati-
cally exploited.

Future work is devoted to the selection of convenient do-
mains, which are required for the hierarchical communica-
tion and the hierarchical greedy selection schemes. Proving
performance guarantees for the hierarchical greedy selec-
tion is also the subject of future work.
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