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Abstract— Gaussian mixture densities are a very common tool
for describing arbitrarily structured uncertainties in various
applications. Many of these applications have to deal with the
fusion of uncertainties, an operation that is usually performed
by multiplication of these densities. The product of Gaussian
mixtures can be calculated exactly, but the number of mixture
components in the resulting mixture increases exponentially.
Hence, it is essential to approximate the resulting mixture with
less components, to keep it tractable for further processing steps.
This paper introduces an approach for approximating the exact
product with a mixture that uses less components. The maximum
approximation error can be chosen by the user. This choice
allows to trade accuracy of the approximation for the number
of mixture components used. This is possible due to the usage
of a progressive processing scheme that calculates the product
operation by means of a system of ordinary differential equations.
The solution of this system yields the parameters of the desired
Gaussian mixture.

I. INTRODUCTION

Many processing schemes in stochastic applications using
Bayesian techniques like estimation and filtering have to deal
with multiplication of probability density functions. Since
arbitrary densities are often approximated by Gaussian mix-
tures, the need for a mixture representation of the product
of mixtures arises. Calculating the product of two Gaussian
mixtures of, say N and M components, yields a mixture with
N ·M components. It is obvious, that successive multiplication
as used in recursive processing schemes increases the number
of components to an intractable size. Hence, a procedure is
required that keeps the number of mixture components after
each multiplication step constant or at least manageable.

There are two main approaches known in literature today
for keeping Gaussian mixtures tractable. The first approach
is reestimation of the product density function’s parame-
ters based on samples taken from the exact product density
function. The goal is to reestimate the function with less
components. Most famous in this category are Parzen windows
[1], the Expectation-Maximization Algorithm (EM) [2], or
advanced methods for learning the parameters of Gaussian
mixtures from samples as applied in [3]. A method especially
designed for the approximation of the product of Gaussian
mixtures based on sampling is given in [4]. It is known,
that reestimation of Gaussian mixtures is an optimization
problem with many local minima, making it tough for sample
based approaches. Furthermore, the use in online processing
applications forbids long search times or large sample sets.

The second approach for keeping the number of components
of Gaussian mixtures tractable is to take the exact mixture
resulting from the product and reduce the number of its com-
ponents. These mixture reduction techniques are well known
in the field of target tracking in random clutter. The exact
Bayesian solution to this tracking problem yields Gaussian
mixture densities growing exponentially in the number of
components [5]. Many approaches to mixture reduction have
been studied, like Nearest Neighbor (NN) approximation [5],
[6] or Joint Probabilistic Data Association (JPDA) [5], [7].
NN reduces the mixtures associated with one target to its
largest component, whereas JPDA merges the components
of a mixture belonging to a target into one single Gaussian
component. It is obvious, that these techniques result in an
intolerable loss of information for the generic multiplication
of Gaussian Mixtures. A more flexible approach is the mixture
reduction algorithm of Salmond as reviewed in [8]. It suc-
cessively merges neighboring components using update rules,
which preserve the mean and covariance of the merged pairs.

No matter what approach is used to keep the density
tractable, the resulting mixture contains less components and
is therefore an approximation of the exact product density
function. Hence, it must be ensured, that the resulting mixture
is as close to the original mixture as possible. In contrast to
the well known techniques mentioned above, we present an
approach that approximates the mixture of the product density
fp = f1 · f2 based on the parameters of the operand mixtures
f1 and f2 while minimizing a distance measure between fp

and its approximation.

Our solution to the problem uses a progressive approxima-
tion scheme called Progressive Bayes [9]. In this approach, the
algorithm starts with one factor of the product and converges
to the desired product. This is achieved by introducing a
progression parameter and transforming the problem into a
system of ordinary differential equations which can be solved
for example using Euler or Runge-Kutta methods [10]. During
the process of solving, the algorithm is adding/removing com-
ponents to keep the distance to the exact density at a minimum.
This approach ensures that a predefined error threshold is
not exceeded while keeping the number of used components
small. In practice, significantly less than N · M components
are required to produce approximations close to the original
density.



The remainder of this paper is structured as follows. We
first give a mathematical formulation of the problem solved in
this paper. In section III we show how to apply the Progressive
Bayes framework to this problem. This is followed by some
examples in section IV. Concluding remarks are made in
section V.

II. PROBLEM FORMULATION

We consider the product of two parametric density functions
which are given as Gaussian mixtures
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where f1 consists of M and f2 consists of N components.
wi,1, wj,2 are the weights, μi,1, μj,2 the mean values, and
σ2

i,1, σ
2
j,2 the variances of the i’th and j’th component of f1

and f2 respectively.
It is possible to describe the product fp = f1 · f2 by

means of a Gaussian mixture as well, since the components
of f1 and f2 are Gaussian densities, which can be multiplied
componentwise. The product of two Gaussian densities is
again a Gaussian density with updated parameters μ and
σ. This leads to fp having M · N components, where the
parameters of each component depend on the parameters of
one component in f1 and of one component in f2.

The Gaussian parameters of each component in fp can be
calculated, using the well known Kalman filter rules
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The weight factors of each component of the Gaussian
mixtures can be updated according to
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It is clear that this growth in the number of components is
a problem for recursive processing which is heavily based on
successive multiplication of densities like

f2 = f1 · g1

f3 = f2 · g2

f4 = f3 · g3

... .

Every time a new mixture gi is multiplied with the resulting
mixture from the preceeding step, the number of components
is increased by the factor of the number of components in gi.
In the worst case this leads to non tractable large mixtures.

Inspecting the parameters of products of Gaussian mixtures
shows, that in many cases there are weights of negligible size.
It also happens, that variances of single components become
very large in comparison to the other variances, hence, the
component becomes very flat and has no influence on the
resulting mixture. This indicates, that the resulting density can
be approximated by a Gaussian mixture with less components.

The goal is to find an approximation f(x) of the product of
two Gaussian mixtures that is close to the exact mixture fp(x).
The deviation between f(x) and fp(x) has to be quantified by
a distance measure G(f, fp).

It must be possible for the user to define a maximum
tolerance threshold for the deviation error. The algorithm has
to find an approximation with less components than in fp with
an error smaller or equal to the error accepted by the user.

III. PROGRESSIVE PROCESSING

Our approach makes use of the Progressive Bayes frame-
work introduced in [9], which was originally intended for non-
linear estimation purposes like filtering and prediction. Since
filtering and prediction are recursive processing approaches,
which are based on multiplication of densities, it is possible to
use the framework also for the basic multiplication of Gaussian
mixtures.

In this section we will first give a short overview of the key
idea behind the Progressive Bayes framework and how it can
be applied to our problem. This is followed by a derivation,
that is an alternative to the one published in [9].

Throughout this paper we will consider just the product of
scalar Gaussian mixtures for brevity. None the less, formulae
for the vector valued case are available.

A. Key Idea

In the first step, we introduce a new parameter γ into the the
term of the exact solution fp(x). γ affects fp in the way, that
for γ = 0 we have a function that can be approximated very
easily and for γ = 1 we have the exact function fp. How this
is achieved will be shown in section III-B. The parameterized
function will be named f̃(x, γ).

Next we define a measure of deviation G(f̃(x, γ), f(x, η))
between the parameterized exact density f̃(x, γ) and the
approximation density f(x, η), where η is the parameter vector
of the approximation density. As we are using Gaussian
mixtures we have

η =
[
η
1
, η

2
, . . . , η

L

]T

for L components, with

η
i
= [wi, μi, σi]

T
,

where wi is the weight, μi is the mean and σ2
i is the variance

of the i’th component.
We will choose the parameterization in f̃(x, γ) in such a

way that for γ = 0 we have G(f̃(x, γ), f(x, η)) = 0. This
means for γ = 0 we know the exact approximation with no
deviation from f̃(x, γ).

We then let γ approach 1 in a progressive way, while
adjusting the parameters η of the approximation density to



Fig. 1. The progression of f̃(x, γ) goes from f2(x) to the product of f1(x)
and f2(x) from figure 2.

keep G at a minimum. Since for γ = 1 we have f̃(x, γ) =
fp(x) and G remains at a minimum, we can guarantee that
f(x) is as close to fp(x) as possible.

If G(f̃(x, γ), f(x, η)) becomes larger than the user defined
threshold, structural adaptation in f(x, η) by means of adding
further components is applied.

B. Parameterized True Density

We now show how to introduce the progression parameter γ
into fp(x) in order to fulfill the constraints from section III-A.
For the remainder of this paper we assume normalized weights
for f1 and f2, which means

∑M
i=1 wi = 1 and

∑N
j=1 wj = 1

respectively.
For γ = 0 it is essential, that f̃(x, γ) is approximated

with no error. Since fp(x) is the product of two Gaussian
mixtures f1(x) and f2(x), we choose the parameterization in
such a way, that for γ = 0 we have f̃(x, γ) = f2(x). So we
can set f(x, η) = f2(x) as well and G(f̃(x, γ), f(x, η)) =
G(f2(x), f2(x)) = 0. The second constraint is, that for γ = 1
we have f̃(x, γ) = fp(x).

To accomplish these two constraints, γ has to be inserted
only into the f1-part of fp, hence, we define

f̃(x, γ) = f̃1(x, γ)f2(x)
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where ε is a small constant and γ ∈ [0 . . . 1]. For γ = 0 the
f1 part of the density is equal to 1, since the exponent is 0.
Hence, f̃(x, γ) = f2 for γ = 0. We omitted 1√

2πσi,1
in the

f1-part since it is only a normalizing factor.
We will start our approximation with the parameters from f2

since this guarantees that G = 0 as shown above. For γ = 1
the parameterization factor 1+ε

γ+ε becomes 1 and “vanishes”.
f̃(x, γ) = fp for γ = 1 and the exact density is reached.

Fig. 2. Top: Gaussian mixture with two components. Bottom: Gaussian
mixture with three components.

Figure 1 shows the progression for f̃(x, γ) in an example
where f1 has three components and f2 has two components as
depicted in figure 2. Please note that the first plot in figure 1
(γ = 0) is the same as f2(x) and the fourth plot shows the
product of f1(x) and f2(x).

Please note further, that the exact product has six compo-
nents, but it is easy to see, that it can be approximated with
four components yielding just a very small error.

C. Parametric Adaptation

To execute the progression of γ from 0 to 1, while keeping
a distance measure at its minimum, we transform the problem
into a system of ordinary first-order differential equations,
which we solve for γ in the interval [0 . . . 1]. Therefore we first
have to define the distance measure between f̃(x, γ) and its
approximation f(x, η). We choose a squared integral distance
measure

G =
1
2

∫
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(
f̃(x, γ) − f(x, η)

)2

dx .

The original paper [9] replaced f(x, η) by a Taylor series
expansion. We omit this replacement here to present an
alternative derivation.

G(f̃(x, γ), f(x, η)) is a function over γ and η. Hence, the
constraint for the minimum requires the derivative with respect
to η and γ to be zero.

By taking the partial derivative of the distance measure G
with respect to the parameter η
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The partial derivative with respect to γ is given by∫
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(1) is a system of ordinary first-order differential equations,
which can be written as
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We now derive analytic expressions for P(η, γ) and b(η, γ).

1) Analytical Expression for P(η, γ): P(η, γ) is divided
into two parts

P(η, γ) = P1(η) + ΔP(η, γ) .

We give solutions for the parts separately. The first part is
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The expression for ΔP is given by
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The solutions for the three-by-three block matrices Mi are
given in figure 3.



Mi = f(x, η) ·
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Fig. 3. Three-by-three block matrix Mi for ΔP.

2) Expression for b(η, γ): The expression for b(η, γ) from
(1) is
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∫

IR

∂f̃(x, γ)
∂γ

∂f(x, η)
∂η

dx .

The partial derivation
∂f(x,η)

∂η is a vector with the elements

∂f(x, η)
∂η

i

= fi(x, η
i
)

⎡
⎢⎣

1
wi

x−μi

σ2
i

(x−μi)
2−σ2

i

σ3
i

⎤
⎥⎦ .

The partial derivation of f̃(x, γ) with respect to γ is

∂f̃(x, γ)
∂γ

=
∂f̃1(x, γ)

∂γ
· f2(x)

=
M∑
i=1

wi,1
−(γ − ε)(x − μi,1)2

(1 + ε)2σ2
i,1

· exp

{
−1

2
(x − μi,1)2

(σi,1
1+ε
γ+ε )

2

}
· f2(x) .
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3) Solving the Differential Equation: We solve the system
of ordinary first-order differential equations (ODE) on the
interval γ ∈ [0 . . . 1]. Since this ODE cannot be solved directly
we have to use numerical approaches, which solve stepwise
on this interval. This can be accomplished with an appropriate
solver, e.g. Euler backward method or a Runge-Kutta solver.

In every step, the algorithm checks if the approximation
error is smaller than the user defined threshold.

4) Structural Adaptation: During the process of solving the
differential equation the deviation between the parameterized
exact density f̃(x, γ) and the approximation density f(x, η)
may become higher than the threshold that was defined by the
user.

This deviation error can be decreased by adding components
to the approximation density f(x, η). For this purpose we

Fig. 4. A priori density f1(x) with large uncertainty. Dashed lines depict
the components of this mixture.

split the component which yields the largest error into several
Gaussian components as described in [9].

The user-defined error can be used in order to trade accuracy
for speed of the algorithm.

IV. EXAMPLES

We now give examples of the application of the presented
approach. To compare the resulting approximation to the exact
function, we use the normalized distance measure

d =

∫
IR

(fp(x) − f(x))2 dx∫
IR

(f(x))2 dx +
∫
IR

(fp(x))2 dx
,

which varies from 0 to 1. d = 0 indicates a perfect match
and d = 1 is the maximum possible error. To give an error in
percent we use

√
d · 100.

A. Example 1

Consider a filtering experiment where we only have vague
a priori knowledge with large uncertainty. Based on a noisy
measurement we update this knowledge.

In this example, a priori knowledge is given by a Gaussian
mixture density f1(x) with four components. The parameters
are given by

w1 =
[
0.2 0.4 0.2 0.2

]
μ1 =

[−3 −1 1 3
]

σ1 =
[
1 1 1 1

]
,

which results in the density shown in figure 4.



Fig. 5. Measurement density f2(x) with smaller uncertainty.

Fig. 6. The approximation of f̃(x, γ) with one component for f(x, η) yields
an error of 1.64% .

The noisy measurement is less uncertain than the a priori
knowledge and is presented by a single Gaussian density f2(x)
with the parameters

μ = −2

and
σ = 1

as shown in figure 5.
Please keep in mind, that the exact product of f1(x) and

f2(x) has four components.
If we accept an approximation error of maximum 2%, the

solver needs 18 steps and only one Gaussian component with
the parameters

μ = −1.7606

and
σ = 0.8944

is obtained. The approximation error at the end of the run is
1.64%. The comparison of the approximated density to the
exact product density is shown in figure 6.

Fig. 7. The approximation of f̃(x, γ) with two components for f(x, η)
yields an error of 0.66% . The dashed lines show the individual components
of the approximation.

Fig. 8. The approximation of f̃(x, γ) with three components for f(x, η)
yields an error of 0.064% . The dashed lines show the individual components
of the approximation.

If we decrease the maximum accepted error to 1%, the
algorithm has to perform a structural approximation once and
we receive a mixture with

w =
[
0.68 0.32

]
μ =

[−2.02 −1.31
]

σ =
[
0.86 0.73

]
as parameters. The resulting approximation error is 0.66%. The
solver needs 37 steps for this result. The resulting mixture is
shown in figure 7.

Decreasing the maximum accepted error further to 0.5%
leads to three components in the result. Their parameters are

w =
[
0.28 0.48 0.24

]
μ =

[−2.42 −1.58 −1.44
]

σ =
[
0.73 0.89 0.63

]
,

as shown in figure 8. The solver needs 77 steps and gives an
approximation error of 0.064%.



TABLE I
APPROXIMATION RESULTS FOR DIFFERENT USER SELECTED

APPROXIMATION ERROR THRESHOLDS.

User threshold 2% 1% 0.5%

# of components 1 2 3

Approx. error 1.64% 0.66% 0.06%

# of solver steps 18 37 77

Fig. 9. The error f̃(x, γ) − f(x, η) for the three approximations from
example 1 with 1,2, and 3 components.

The results of the experiment with the different user se-
lected thresholds are given in table I. It shows how the user
definable threshold can be used to control the tradeoff between
approximation quality and speed of the algorithm.

Figure 9 shows the error f̃(x, γ) − f(x, η) for the three
resulting approximations from our experiment governed by
the chosen threshold.

B. Example 2
As a second example we approximate the product of two

more complicated mixtures. These densities are nearly the
same as in section III-B. We just altered the weights and
standard deviations. For f1 we have the parameters

w1 =
[
0.5 0.5

]
μ1 =

[−2 2
]

σ1 =
[
2 2

]
as shown in figure 10.

For f2 we have the parameters

w2 =
[
0.4 0.3 0.3

]
μ2 =

[−4 0 4
]

σ2 =
[
0.9 1 1.2

]
as shown in figure 11. The algorithm approximates the product
of f1 and f2 with three components

w =
[
0.31 0.46 0.23

]
μ =

[−3.65 0 3.44
]

σ =
[
0.82 1 1.04

]
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Fig. 10. Density f1 for Example 2. The dashed lines show the individual
components.
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Fig. 11. Density f2 for Example 2. The dashed lines show the individual
components.

as shown in figure 12.
The resulting approximation error is 0.075585% and the

solver needed 23 steps. The chosen maximum error for this
experiment was 2%.

The exact product of these two densities consists of six
components and is shown in figure 13. This is an example,
where the approach finds a very accurate approximation with
less components. In order to compare our algorithm to an-
other approach, we chose the Salmond mixture reduction as
described in [8]. The Clustering threshold was set to 0.09. We
received a Gaussian mixture with 3 components as shown in
figure 14. The error of the reduced version was 3.1344%.

V. CONCLUSIONS

In this paper a method for approximating the product of
two Gaussian mixtures with a Gaussian mixture comprising
less components than the exact product has been presented.
The applied method guarantees that the approximation error
between the product function and its approximation is smaller
than a user predefined maximum error.
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Fig. 12. The approximation of f1 ·f2. The dashed lines show the individual
components. Due to the small approximation error of 0.075585% it is hard
to discriminate between the exact density and its approximation.
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Fig. 13. The exact product of f1 · f2. The dashed lines show the individual
components.
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Fig. 14. Salmond Mixture Reduction in comparison to the exact product.
The dashed lines show the individual components. The error is 3.1344%.

This re-approximation of the product of two Gaussian mix-
tures is extremely helpful for recursive processing schemes,
since the complexity of resulting mixture densities can be kept
at a tractable level.

Further applications are cascaded systems like continuous
or hybrid nonlinear Bayesian Networks as given in [11], [12].
In these networks, densities are propagated from node to node,
which involves multiplication with other densities. It is clear,
that arbitrarily large networks lead to an enormous amount of
components. Not to speak of dynamic networks of this kind.

Still an open question is, how the approach behaves in
online processing. All experiments made so far were con-
ducted with unoptimized Matlab code. It is expected that an
implementation in C++ and optimization of the ODE solver
leads to a real time capable application. Studies on this topic
are currently conducted.
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