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Abstract—We propose a sample representation of estimation
errors that is utilized to reconstruct the joint covariance in
distributed estimation systems. The key idea is to sample uncorre-
lated and fully correlated noise according to different techniques
at local estimators without knowledge about the processing
of other nodes in the network. In this way, the correlation
between estimates is inherently linked to the representation of
the corresponding sample sets. We discuss the noise processing,
derive key attributes, and evaluate the precision of the covariance
estimates.
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I. INTRODUCTION

Over the last few decades, distributed estimation has been a
major research topic. Several algorithms that consider different
types of communication and models have been developed and
applied to various fields [1].

Even for linear models, distributed estimation is still
considered to be an active research area. While the Kalman
filter (KF) provides an – in several respects – optimal solution
for the central linear estimation problem, the main challenges
in distributed estimation arise from limited knowledge about
the processing at remote nodes. In particular, correlations
between estimates that emerge from the same (common) process
model [2] and from past data exchanges [3] are challenging to
track.

Techniques to calculate or guess these correlations under
the unrealistic assumption of global model knowledge (every
node knows the measurement models and communication paths
of all other nodes) have been derived [4] and optimal methods
to fuse estimates based on known joint covariances have been
proposed for two [2] and more than two nodes [5], [6].

Indeed, the emergence of the research topic fusion under
unknown correlations [7], [8] emphasizes the need and the
challenge to calculate cross-covariances. The main idea of
algorithms from this field is to minimize the worst-case error,
i.e., to bound all possible outcomes of fused covariances by
an artificial covariance of minimal size.

Largely independent from classical KF methods, sample-
based approaches have gained attention in (centralized) nonlin-
ear estimation. Here, weakly nonlinear filters that often rely on
some type of Gaussian assumption such as Unscented Kalman
filtering [9] are distinguished from general density estimators
that are referred to as (sequential) Monte-Carlo approaches or
particle filters [10].

A connection between linear filtering and sample-based
estimation has been established by the Ensemble KF [11], which
aims at reducing the computational complexity of processing
high dimensional covariances. One of the main challenges that

arises in the ensemble KF and in sample-based linear filtering
in general, is to reconstruct covariances based on sample sets.

A variety of methods and heuristics to estimate covariances
or inverses of covariances – in particular of high dimension – are
available in literature. First and foremost, it is worth mentioning
the James-Stein-Estimator [12], which is a biased estimator
that dominates usual least squares or ML approaches. The
underlying idea is called shrinkage and encompasses approaches
that (often linearly) combine the estimate with some additional
information. More recently, regression-based methods have been
proposed that process the samples iteratively in order to obtain
coefficients of a triangular matrix that is used in a modified
Cholesky factorization to reconstruct the joint covariance [13]
[14]. Especially for sparse matrices, optimization algorithms for
L1-norms, so called lasso methods, have been developed [15].
A comprehensive overview over different covariance estimation
methods is given in [16]. Quality attributes, in particular bounds,
for specific types of estimators and covariances are given
in [17].

In this paper, we propose to use sampling in linear
distributed estimation. We locally calculate sample sets to
represent error terms and demonstrate how the joint covariance
is reconstructed from these quantities. The main novelties are:

• sample-based error representation in distributed esti-
mation,

• explicit modeling of uncorrelated and fully correlated
noise with sample sets,

• reconstruction of joint covariances based on locally
obtained data.

The paper is structured as follows. We motivate and illustrate
the challenges that arise in the estimation of joint covariances
in Sec. II. In Sec. III, the main techniques and theorems for
distributed sample-based covariance estimation are derived in
a general context. Sec. IV is concerned with the integration of
estimation quantities into the sample set representation, before
we finally evaluate and discuss sampling techniques in Sec. V.

II. PROBLEM FORMULATION

We consider connected nodes s ∈ S = {1, . . . , S} with
local computation and storage capabilities that collectively
estimate the state of a common phenomenon. The local
processing of nodes is assumed to be unknown to other nodes.
The exchange of information follows an arbitrary pattern.

The state evolution model and the node-specific measure-
ment model are known to the nodes and are given by the linear
relations

xk+1 = Axk + Buk +wk and zsk = Hs
kxk + vsk . (1)

The noise terms are assumed to be independent of each other
and are distributed according to arbitrary probability density



functions with zero mean and covariances E{wk(wk)>} = Q
and E{vsk(vsk)>} = Rs

k respectively. The nodes derive local es-
timates x̂sk by linearly combining and predicting measurements
as well as by exchanging information. Due to the common
process noise wk that is modeled in all nodes and due to past
data exchanges, correlations arise between estimates.

While for linear filters, the calculation of local covariances
is feasible in closed form, the evolution of correlations depends
on matrix transformations and gains at remote nodes. When
these operations are known to all nodes in the network, the
problem is to optimize filter and fusion gains under global
model knowledge. However, in realistic environments, the
quality of measurements is typically time-variant and state-
dependent, and nodes have only knowledge about their direct
neighborhood. Hence, global model knowledge is at best an
approximation of the true system and often inapplicable.

The problem considered in this paper is to estimate
correlations based on locally available information only. Let
the estimates x̂sk, s ∈ S be given, then we aim to reconstruct
the joint covariance P = E{(x̂ − 1x)(x̂ − 1x)>} , with
x̂ = ((x̂1)>, . . . , (x̂S)>)> and 1 = (I, . . . , I)>. Note that the
joint covariance reflects the local covariances of the estimates
and their correlations. With this information in hand, estimates
can be optimally processed [2], [5].

It is worth pointing out that the results derived in this paper
are not confined to spatially distributed sensor networks but can
be utilized for parallel implementations of estimation algorithms
or for networks with specific communication patterns as well.

III. DISTRIBUTED COVARIANCE ESTIMATION

First, we introduce the concept of distributed sample-based
estimation of joint covariances. For this purpose, we examine an
arbitrary estimate x̂ of a linear system depicted in Sec. II. The
error process of the estimate x̂ is given by a linear combination
of noise terms1. Consider for example the filter step that consists
of a linear combination of estimate and measurement according
to

x̂+ = Lx̂ + Kz .

As the measurement z is an instance of the random process
depicted in (1), we know that for unbiased estimators L =
(I − KH) holds. Assume that ê is a linear combination of
noise terms. The error process of the filtered estimate is given
by

ê+ = x̂+ − x = (I−KH)ê + Kv ,

which, in turn, is then again a linear combination of noise terms.
The same argument holds true for other linear operations such
as prediction and fusion so that we consider the error process
of estimates as linear combinations of noise terms. In the
following, these noise terms are denoted as ψ.

In linear estimation theory, estimates are usually given
as a tuple of estimate and covariance, where the covariance
describes the attributes of the error process. In the remainder
of this section, we augment this two-quantity approach by a
sample set that specifies an alternative way to describe the
error process. Note that, at least temporarily, we regard sample
sets as additional information. In the next section, we propose
methods to integrate the estimate and covariance in the sample
representation.

1This is not to be confused with the error process of the underlying system.

Remember that the error process is given as the linear
combination of noise terms. We collect the indices of all noise
terms in T and those by which the node s is affected in
T s ⊂ T . Let Bs

t denote the linear transformation of the noise
term ψ

t
at node s. Then the error process of estimate x̂s is

given by es =
∑
t∈T s Bs

tψ
s

t
. Assumed that we are capable of

generating samples from noise distributions, it makes sense to
specify a sample characterization of an error process.

Definition 1 A sample ξs
i

characterizes the error process of
an estimate ês ∼

∑
t∈T s Bs

tψ
s

t
= es when ξs

i
∼ es + bs with

a non-stochastic bias bs.

In the linear system from Sec. II, the noise terms are
independent, and therefore, for recursive estimators, the samples
can be processed recursively as well. To this end, it is sufficient
to apply the same linear transformations to the noise samples
to which the error process is subject to and to generate new
noise independently of already sampled one.

In order to represent covariances, we extend Def. 1 to
sample sets.

Definition 2 A sample set Ξs = [ξs
1
, . . . , ξs

n
] with ξ̄

s
=

1
n

∑n
i=1 ξ

s

i
(with affiliated sampling policy) characterizes the

error process of an estimate (x̂s,Ps) when ξs
i

characterizes
ês, i ∈ {1, . . . , n} and

P̃s =
1

n− 1

n∑
i=1

(ξs
i
− ξ̄s)(ξs

i
− ξ̄s)> (2)

is a consistent estimate of Ps, i.e., limn→∞ P̃s = Ps.

While the recursive processing of samples is uniquely
specified by the error process of the estimate, the noise
generation has some degrees of freedom. For the considered
system (1) with uncorrelated noise terms, it is meaningful
to formalize the noise generation according to the following
definition.

Definition 3 A noise sampler with uncertainty Pψ generates
samples φ

1
, . . . , φ

n
with:

a) zero mean: E{ 1n
∑n
i=1 φi} = 0,

b) asymptotically correct covariance:
limn→∞

1
n−1

∑n
i=1(φ

i
− φ̄)(φ

i
− φ̄)> = Pψ,

where φ̄ = 1
n

∑n
i=1 φi,

c) asymptotic independence: limn→∞
1

n−1
∑n
i=1(φ1

i
−

φ̄
1
)(φ2

i
− φ̄

2
)> = 0 for independently generated

sample sets φ1
i

and φ2
i
, i ∈ {1, . . . , n} (also for

different noise samplers).

Note that we focus on the second central moment to
represent the noise densities. In particular, we have neither
specified the distribution from which the samples are drawn
(can be different from the noise distribution) nor have we
demanded that the samples within a sample set are uncorrelated.
Depending on the application, more restrictive definitions of
noise samplers are meaningful as the precision of the covariance
estimate indeed depends on those attributes.

It is also worth pointing out the difference between noise
process ψ and error process e. The latter one is a linear
combination of several noise processes and is characterized by



samples ξ, whereas the samples of noise terms are denoted as
φ.

For local estimates, the noise errors can be examined
independently of each other. Thus, the sample set characterizes
the local covariance, if the noise is sampled with a noise sampler
from Def. 3 and the noise samples are transformed the same way
as the error process. However, for the more general problem
of estimating the joint covariance of distributed estimates, we
need to sample correlated noise as well. To this end, we define
synchronized noise samplers.

Definition 4 Let φs
1
, . . . , φs

n
denote samples with means φ̄s

generated by different noise samplers s ∈ S with the same un-
certainty Pψ . When limn→∞

∑n
i=1(φs1

i
− φ̄s1)(φs2

i
− φ̄s2)> =

Pψ for s1, s2 ∈ S, we refer to them as synchronized noise
samplers.

Note that the sample sets of synchronized noise samplers are
not generated independently of each other as it is mentioned in
Def. 3(c). An easy way to realize synchronized noise samplers
is to generate the same (ordered) list of noise samples with
pseudo-random number generators. For this purpose, pseudo-
random number generators at different nodes use network-wide
known variables such as the current time step, a synchronized
number, etc. as a common seed value.

Having the necessary noise sampler techniques available,
we are able to propose a policy for the local processing of
noise samples that does not require communication between
nodes.

Definition 5 Let noise terms be denoted by ψ
t
t ∈ T . A simple

covariance-retaining sampling policy consists of the following
parts:

a) uncorrelated noise, i.e., E{ψ
t1

(ψ
t2

)>} = 0, t1 6=
t2 ∈ T , is sampled with non-synchronized noise
samplers.

b) fully correlated noise, i.e., E{ψ
t1

(ψ
t2

)>} = Pψ
t1(=

Pψ
t2), t1, t2 ∈ T is sampled with synchronized noise

samplers.
c) the same linear transformations and linear combina-

tions are applied to estimates and samples.

The policy finally enables us to state our main theorems that
pertain to the local processing of noise samples (Theorem 1)
and to the combination of sample sets (Theorem 2). The proofs
are given in the Appendix.

Theorem 1 Consider error processes es, s ∈ S that consist of
linear combinations of either uncorrelated or fully correlated
zero mean noise terms. The joint error estimation process
that is given by

(
(e1)> . . . (eS)>

)>
with corresponding

joint covariance P is characterized by the sample set Ξ =(
(Ξ1)> . . . (ΞS)>

)>
, where Ξs is obtained by the local

application of the simple covariance-retaining sampling policy
from Def. 5. This means that

P̃ =
1

n− 1

n∑
i=1

(ξ
i
− ξ̄)(ξ

i
− ξ̄)> (3)

with ξ
i

= ((ξ1
i
)> . . . (ξS

i
)>)> and ξ̄ = ((ξ̄

1
)> . . . (ξ̄

S
)>)> is

a consistent estimator of the joint covariance P.

Theorem 2 Same assumptions as in Theorem 1. Then, the
linear combination of estimates x̂s, s ∈ S ′ ⊆ S according to

x̂s
′

=
∑
s∈S′

Lsx̂s and Ξs
′

=
∑
s∈S′

LsΞs , s′ ∈ S ,

yields an estimate with an error process that is a linear
combination of either uncorrelated or fully correlated zero
mean noise terms as it is obtained by the simple covariance-
retaining sampling policy and that is characterized by the
sample set Ξ = ((Ξ1)> . . . (Ξs′)> . . . (ΞS)>)>.

Remark 1 As stated in Theorem 2, the sample structure is not
corrupted due to linear combinations of sample sets. Therefore,
consecutive combinations of sample sets and subsequent
processing with the simple covariance-retaining sampling policy
still provide consistent estimates of covariances.

In summary, by means of Theorems 1 and 2 it is feasible
to estimate the joint covariance (and in particular the cross-
covariance terms) in linear filtering based on locally obtained
samples. These results can be extended to other consistent
estimators, e.g., the Gaussian maximum likelihood covariance
estimator, as long as the evaluation of the covariance is adapted
to the sampling policy.

IV. COMBINATION OF ESTIMATION DATA STRUCTURES

In this section, we propose methods to integrate the
estimation vector and the covariance into the sample structure.
By this, we improve the precision of the covariance estimation,
enhance the rate of convergence, and reduce the amount of
data that must be stored and communicated between nodes.
The idea is to exploit the concurrent storage and processing of
error information in sample sets and covariances.

Basically, there are two concepts of linear filtering with
samples. Either, sample sets are used actively in the filtering
process, i.e., the gains are chosen based on the samples, or
passive functionality is assigned to the sample sets by storing
(additional) meta information only – as it was done in Sec. III.

Sample sets play an active role in many state-of-the-art
algorithms such as the Unscented KF [9] or the Ensemble
KF [11]. The advantage of applying transformations based
on samples is that the estimation of nonlinear models is
straightforward. However, when the noise terms are Gaussian
distributed and the models are linear, it is well-known that the
KF is the MMSE estimator. Therefore, only those algorithms
that calculate the same gains and transformation matrices
as the KF yield the MMSE result. While algorithms with a
deterministic sampling strategy might coincide with the KF for
linear models, stochastic sampling strategies, which are required
for the covariance estimation in Sec. III, yield suboptimal gains
in general.

Hence, we focus on a passive integration of samples in
this section. Technically speaking, we leave it to the reader to
choose the filter gains, e.g., by applying local KFs, ensemble
KFs [11], Distributed KFs [18], [19], etc.

Let us assume that a subset of nodes S ′ ⊆ S exchanges
their local estimates, covariances and sample sets. As shown
in Theorem 1 and Theorem 2, the joint covariance can be
estimated by stacking together the samples from the distributed
nodes and by calculating the corresponding sample covariance.
Additionally, the local covariances, i.e., the block diagonal



entries of the joint covariance, are obtained (exactly) by methods
of classic linear filtering theory.

Having these data available, we face the problem of
combining the estimated joint covariance with the incomplete
block-diagonal matrix consisting of local covariances. The naı̈ve
approach is to apply methods from covariance estimation theory
that optimize a meaningful error criterion such as the entropy
loss or the quadratic loss [20] and that have been discussed in
Sec. I.

We pursue a different direction here. By adapting the noise
samples generated by a noise sampler from Def. 3, we achieve
a sample representation that already comprises the estimate
and covariance information.

The first idea is to represent local estimates as sample
means. Therefore, the invariant x̂ = ξ̄ =

∑n
i=1 ξi must hold

in all processing steps. Assumed that the invariant is ensured
at initialization and all noise terms are additive as described
in Sec. II. Then a simple technique is to generate zero mean
noise with ψ̄ = 1

n

∑n
i=1ψi = 0 and enforcing the invariant

by adding the (same) proper deterministic bias term b to all
samples. The correctness of this approach directly follows from
Def. 1. We impose zero mean in the noise sample generation
by a mean correction.

Proposition 1 Let φ
1
, . . . , φ

n
be a set of noise samples with

φ̄ = 1
n

∑n
i=1 φi, generated by a noise sampler with uncertainty

Pψ from Def. 3. Then, φ′
i

= φ
i
− φ̄ is a noise sampler with

uncertainty Pψ and φ̄′ = 1
n

∑n
i=1 φ

′
i

= 0.

PROOF. zero mean follows from the definition of the noise
sampler. The asymptotic covariance is proven by

lim
n→∞

1

n− 1

n∑
i=1

(φ
i
− φ̄− 0)(φ

i
− φ̄− 0)> = Pψ .

The asymptotic independence follows from the zero mean
attribute of the underlying noise sampler as limn→∞ φ̄ = 0
and therefore, the noise sampler coincide for n→∞. �

Note that even if the values generated by the underlying
noise sampler are uncorrelated, the noise samples after the
mean correction are in general correlated for n < ∞. The
considered asymptotic behavior, however, is not affected.

In a second step, we integrate the local covariance into
the sample representation. To this end, we must ensure that
the local sample covariance coincides with the exactly known
local covariance, i.e., P = 1

n−1
∑n
i=1(ξ

i
− ξ̄)(ξ

i
− ξ̄)> =

P̃. Unfortunately, the correlation between sampled noise and
samples is not negligible for n < ∞, so that a covariance-
enforcing sampling policy depends on the sample instances.
We obtain the following noise sampling algorithm.

Proposition 2 Let φ
1
, . . . , φ

n
be a set of noise samples gen-

erated by a noise sampler with uncertainty Pψ from Def. 3
and ξ

1
, . . . , ξ

n
a set of samples with estimated uncertainty

P̃ = P. The cross-covariance between samples and noise
samples is denoted by Pξφ = 1

n−1
∑n
i=1(ξ

i
− ξ̄)(φ

i
− φ̄)>.

Assume furthermore that the error process is described by the
sample processing

ξ+
i

= Kξ
i
+ φ

i
. (4)

Then,
φ′
i

= T(φ
i
− φ̄) (5)

with
T=

√
Pψ+KPξφ(Pφ)−1Pφξ(K)>

(√
Pφ
)−1−KPξφ(Pφ)

−1

is a noise sampler that ensures that the sample covariance
equals the local covariance2.

According to Proposition 2, it is possible to concurrently
preserve the covariance representation and the asymptotic
consistency in linear combinations of noise terms. Linearly
transformed noise, as it appears for example in filter equa-
tions, must be transformed by inverting it with the linear
transformation. For ξ+

i
= Kξ

i
+ Lφ

i
we obtain T =√

−Γ(
√

Pφ)
−1 − (L)

−1

KPξφ(Pφ)
−1

with Γ = −(L)
−1

(P+ +

KPξφ(Pφ)
−1

Pφξ(K)> −KP̃(K)>)(L)
−>

.
In order to represent the true covariance by a set of samples,

a necessary condition is n > dim{P} (one eigenvalue is zero
due to the mean correction, so n = dim{P} is not sufficient),
as otherwise the sample matrices are not positive definite and
the Cholesky decomposition cannot be calculated. It is also
worth mentioning that synchronized noise samplers that employ
Proposition 2 generate different noise for n < ∞ when the
local covariance or the correlation between noise and local
covariance is different.

Usage of Sampling Techniques
Depending on the estimation algorithm that is employed

at the sensors, measurements are either combined in tracks
with exclusively local information or they are comprised in
local estimates, which may entail measurements from different
sources. The first type of processing is sometimes referred
to as scan-to-track and is for example used in the distributed
Kalman filter [18] or the hypothesizing Kalman filter [19].
As the processing of purely local information provides exact
covariances, the techniques from the last section can be applied
directly. In contrast to that, estimate processing that involves
fusion of recursively obtained information and the subsequent
inclusion of measurements, requires additional thought.

As it has been shown in Sec. III, the asymptotic properties
of the sample representation of the error process are not affected
by linear combinations of sample sets. However, the proposed
technique in Sec. IV aims at representing the local covariances
exactly. When sample sets from different nodes are (linearly)
combined3, the resulting covariance depends on the cross-
covariances. Since the cross-covariance terms are error-prone
estimates of the true covariance, the local covariances of the
fused estimates are error-prone as well.

For applications that do not require the covariance to be
bounded conservatively, this problem can likely be ignored as
the covariance of the fused estimate primarily depends on the
well-known local covariances and the estimates of the cross-
covariances are supposed to have a small error anyway. This
especially applies to sensor networks with a low communication
rate as then the local covariances mostly depend on exactly
known (local) measurement errors and less on the covariance
estimates from past data exchanges. Alternatively, covariance

2The square root
√
· denotes a Cholesky factor with

√
M
√
M

>
= M.

3That includes the application of optimal fusion algorithm such as [2], [5]
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Figure 1. The relative deviation of the estimated covariance from the true
covariance. The results of scenarios with the same parameters are denoted
in the same color. The left bars illustrate the results of the procedure from
Sec. III and the right bars of the covariance-enforcing policy. Error values
greater than 1 are clipped.

inflation ideas [7] combined with shrinkage techniques [12]
can be used that artificially enlarge local covariances in order
to account for uncertainties in the cross-covariance estimate
and prevent an underestimation of the local covariance.

V. EVALUATION

Finally, we examine the precision of sample-based covari-
ance estimation with a finite number of samples. We vary the
dimension of the system state from 1 to 10 and the number of
samples per node between 5 and 500. The model depends
on the dimension of the system dim{x} and is given by

xk+1 =

1 . . . 1
. . .

...
0 1

xk +wk , with wk ∼ N (0, I). Two

nodes observe the system in each time step according to the
models zi = x + vi, i ∈ {1, 2} with v1 ∼ N (0, I) and
v2 ∼ N (0, 2 · I). The initial estimates are uncorrelated with
covariances P1

1 = I and P2
1 = 2 ·I. The covariance is estimated

by means of sample sets. The noise is sampled from a Gaussian
distribution. After 10 time steps, the samples are exchanged
and the reconstructed joint covariance is compared with the
actual one.

We examine the Euclidean matrix norm of the difference
between estimated and true covariance normalized by the
Euclidean matrix norm of the true covariance, i.e., ‖P̃ −
P‖2/‖P‖2, which gives a relative deviation of the covariance
estimate from the true covariance. The results of the procedure
from Sec. III are compared to the covariance-enforcing strategy
from Sec. IV in 50 Monte-Carlo runs.

As it can be seen in Fig. 1, the estimation precision
improves with the number of samples and is in general higher
when the dimension of the considered system is smaller. The
covariance-enforcing procedure is significantly better than the
standard approach for almost all dimensions and sample set
sizes. Furthermore, the covariance estimates in scenarios with
less than 10 samples have a high error attached. For sample sets
of sizes 20 and 50, the relative error of the covariance-enforcing
algorithm is reduced to 0.2− 0.6 and 0.1− 0.4, respectively.

Especially for small sample sets, a small increase in the

number of samples increases the precision significantly. By
comparing for example the error of the covariance-enforcing
policy with n = 10; dim{x} = 2 with n = 20; dim{x} = 10,
which is approximately 0.6 in both cases, one can see that the
error remains the same when the dimension is quintupled while
the number of samples is only doubled.

Therefore, an evaluation of the theoretic performance of the
sampling algorithm should always precede an application of the
algorithm. Eventually, the number of samples must be weighed
against the estimation performance. Especially in scenarios
with low communication costs or when the state dimension
is high, the proposed scheme is useful. For other scenarios,
it might be worth to evaluate different sampling strategies or
other noise transformations.

VI. CONCLUSIONS

We have proposed a sample-based approach for the repre-
sentation of error processes in linear systems that permits the
reconstruction of the joint covariance based on locally obtained
data. Although the focus was on the asymptotic properties of the
covariance estimation scheme, we also proposed a technique to
integrate estimate and covariance into the sample representation
and evaluated the different approaches.

Most of the results presented in this paper pertain only
asymptotic properties of sample-based cross-covariance esti-
mation. Future research is likely to focus on the derivation
of quality attributes for a finite number of samples and the
enhancement of sampling strategies to minimize the error. In
particular, sampling strategies that take into account higher
moments can be considered and policies to sample partial
correlations can be derived. Apart from that, the ideas developed
here can be easily extended to nonlinear models.

APPENDIX

PROOF OF THEOREM 1. In a first step, we prove that by
applying the simple covariance-retaining sampling policy, the
samples characterize the local error process and the sample
sets characterize the local covariance.

Consider the sample set ξ
1
, . . . , ξ

n
. According to Def. 5,

the same transformations are applied to estimate and noise
samples, which guarantees that the samples characterize the
error process. Therefore, we have
ês ∼

∑
t∈T s

Bs
tψt and ξs

i
=
∑
t∈T s

Bs
tφ
s

t,i
, i ∈ {1, . . . , n} .

According to the assumptions, the error terms are uncorrelated
for n → ∞ and as the noise samples φs

t,i
have been

generated independently (c.f., Def. 3(b)), it directly follows
E{ψ

t
(ψ

t
)>} = limn→∞

1
n−1

∑n
i=1(φs

t,i
− φ̄s

t,i
)(φs

t,i
− φ̄s

t,i
)>.

It remains to show that the cross-covariances are obtained
correctly. Let s1 6= s2 ∈ S denote the indices of two sensors.
The local error processes comprise noise terms with indices
T si ⊆ T S , si ∈ S. Then, the cross-covariance between these
estimates is given by

Ps1s2 =
∑

t1∈T s1 ,t2∈T s2

Bs1
t1 E{ψt1(ψ

t2
)>}(Bs2

t2 )> .

For t1 6= t2, the sampled cross-covariance for n → ∞ is 0
according to Def. 3(c). Therefore, we obtain

1

n− 1

n∑
i=1

∑
t∈T s1∩T s2

Bs1
t (φs1

t,i
− φ̄s1

t,i
)(φs2

t,i
− φ̄s2

t,i
)>(Bs2

t )> ,



and by changing the position of the sum∑
t∈T s1∩T s2

Bs1
t

(
1

n− 1

n∑
i=1

(φs1
t,i
− φ̄s1

t,i
)(φs2

t,i
− φ̄s2

t,i
)>
)

(Bs2
t )> .

According to the simple covariance-retaining sampling policy
from Def. 5, correlated noise is sampled with synchronized
noise samplers and thus, from Def. 4 it follows that this term
equals Pij . �

PROOF OF THEOREM 2. We consider samples as instances
of linear combinations of the true noise terms ψ

t
with ξ̄s ∼∑

t∈T s Bs
tψt, s ∈ S. Then, the fused error process is given

by the linear combination of fully correlated and uncorrelated
noise terms
ês
′
∼

∑
t∈

⋃
s∈S′ T s

Bs′

t ψt with Bs′

t =
∑

s with t∈T s

LsBs
t , (6)

where Bs
t denotes the (unaltered) local transformation of

the noise and Ls is the transformation matrix in the fusion.
The same considerations apply for the samples so that they
characterize the noise.

It remains to show that the sample-based covariance
estimation is consistent. This, however, follows along the lines
of the proof of Theorem 1 as the samples from uncorrelated
noise are not only uncorrelated from other local noise terms
but also from noise of remote noise samplers. Therefore, the
sampled covariance for n→∞ is given by

∑
t∈

⋃
s∈S′ T s Nt

with
Nt =

∑
s1,s2 with
t∈T s1∩T s2

Ls1Bs1
t Ms1s2

t (Bs2
t )>(Ls2)> ,

where Ms1s2
t denotes the sample covariance of correlated noise

between nodes s1 and s2. For n→∞, Ms1s2
t = E{ψ

t
(ψ

t
)>}

and thus, Nt = Bs′

t E{ψt(ψt)
>}(Bs′

t )>. But with this,∑
t∈

⋃
s∈S′ T s Nt represents the true covariance of the fused

estimate that is obtained from (6). �

PROOF OF PROPOSITION 2. First we note that the underlying
true covariance process is given by

P+ = KP(K)> + Pψ .
The sample covariance with noise samples transformed by (5)
is given by

P̃+ =
1

n− 1

n∑
i=1

(K(ξ
i
− ξ̄)−T(φ

i
− φ̄− 0))·

(K(ξ
i
− ξ̄)−T(φ

i
− φ̄− 0))> =

KP(K)> −TPφξ(K)> −KPξφ(T)> + TPφ(T)> .
We transform this equality to the matrix equation

(T I)

(
Pφ Pφξ(K)>

KPξφ KP(K)> −P+

)
︸ ︷︷ ︸

E

(
(T)>

I

)
= 0 ,

and obtain with Γ = KP̃(K)> − P+ −
KPξφ(Pφ)

−1

Pφξ(K)> = −Pψ − KPξφ(Pφ)
−1

Pφξ(K)>

the lower block triangular matrix

D =

( √
Pφ 0

KPξφ(
√

Pφ)
−> √

Γ

)
as square root of E. From this, we get the condition
(T
√

Pφ + KPξφ(
√

Pφ)
−>

)2 + Γ = 0. This is equivalent
to T

√
Pφ + KPξφ(

√
Pφ)

−>
=
√
−Γ ⇔ T = (

√
−Γ −

KPξφ(
√

Pφ)
−>

)(
√

Pφ)
−1

=
√
−Γ(
√

Pφ)
−1 −KPξφ(Pφ)

−1

.

zero mean follows from E{ 1n
∑n
i=1 T(φ

i
− φ̄)} =

E{T 1
n (−nφ̄+

∑n
i=1 φi)} = TE{0}. The asymptotic

attributes of the transformation follow from Proposition 2 as
with limn→∞Pξφ = 0 and limn→∞Pφ = Pψ, the solution
is given by T = I. �
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