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Abstract— In this paper, we address the problem of con-
trolling a system over an unreliable UDP-like network that
is affected by time-varying delays and randomly occurring
packet losses. A major challenge of this setup is that the
controller just has uncertain information about the control
inputs actually applied by the actuator. The key idea of this
work is to model the uncertain control inputs by random
variables, the so-called virtual control inputs, which are charac-
terized by discrete probability density functions. Subject to this
probabilistic description, a novel, easy to implement sequence-
based control approach is proposed that extends any given
state feedback controller designed without consideration of the
network-induced disturbances. The high performance of the
proposed controller is demonstrated by means of Monte Carlo
simulation runs with an inverted pendulum on a cart.

I. INTRODUCTION

In networked control systems (NCS), the communication
between components of the control loop can be realized via a
communication network instead of a transparent connection
[1], [2]. This system architecture offers many advantages,
such as simple installation and maintenance, as well as a
high flexibility in the system structure.

However, it is well known that compared to a transparent
connection, the presence of a communication network in
the control loop decreases the quality of control or even
destabilizes the system [3], [4], [5]. This is mainly caused by
time-varying transmission delays, randomly occurring packet
losses, limited bandwidth of the communication channel, or
quantization errors. Consequently, control methods for NCS
have to consider both communication and control aspects.

Our approach is based on the well-known control tech-
nique for NCSs to transmit not just a single control input,
but a whole sequence of adequate inputs for the future time
steps, e.g., see [6], [7], [8], [9], [10]. These sequence-based
control methods take advantage of the property of modern
communication networks, in which data is transmitted in
large time-stamped packets. The successfully transmitted
sequences are stored in a buffer at the actuator and a specific
selection logic enables that an adequate input can be passed
on to the plant at every time step.

The main challenge of sequence-based control over an
unreliable network that does not provide acknowledgements
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Fig. 1. Considered NCS architecture. Controller and actuator are connected
through a communication network, whereas the link between plant and
controller is transparent. For compensation of time delays and packet losses,
a sequence-based controller is employed, which transmits an entire sequence
Uk of adequate future control inputs instead of a single one.

of successfully transmitted packets is that the controller only
has uncertain information about the control inputs actually
applied by the actuator. In the following, various sequence-
based approaches are presented, which can deal with this
uncertainty.

A. Related Work

In [7] and [11], a deterministic protocol is proposed to
guarantee that the sequence of control inputs used by the
controller for state predictions coincides with the sequence
actually applied by the actuator. By forcing this property, the
so-called prediction consistency, there are some significant
drawbacks. Especially in the case of long time delays, the
controller is frequently in recovery mode, in which the ac-
tuator rejects inconsistently predicted sequences, even when
they are based on recent measurements.

In [12], a scenario-based NCS controller is proposed
calculating the optimal control inputs for each possible delay
of the previously transmitted sequences. Then, the set of
control sequences is transmitted to a smart actuator, which
selects the correct sequence. Obviously, this approach is
impracticable if longer time delays should be considered.

Many sequence-based controller send at every time step a
sequence of inputs resulting from a deterministic open-loop
control problem exclusively depending on the current system
state, e.g. see [8] or [13]. Consequently, these approaches do
not incorporate into the control decision that control inputs
for future time steps have already been sent by the controller
and stored in the buffer of the actuator. However, these inputs
have obviously a significant effect on the future development
of the system.

In [14], a sequence-based controller is proposed that is
based on a standard feedback controller, which has been



designed without consideration of network-induced distur-
bances. Exclusively based on the current system state, the
controller predicts the future system development by means
of a deterministic system model and the given feedback
controller.

B. Key Idea

In this paper, we propose a sequence-based control method
for NCS that models the unknown future inputs by random
variables, named virtual control inputs. These random vari-
ables are characterized by probability density functions over
potentially applied control inputs, which are derived from the
data transmitted by the controller in the past. Based on this
probabilistic description representing the best knowledge of
the controller about the situation at the actuator, a sequence
of control inputs for the future time steps is determined.

C. Notation

Throughout the paper, random variables a are written
in bold face letters, whereas deterministic quantities a are
in normal lettering. Furthermore, the notation a ∼ f(a)
means that the random variable a is characterized by its
probability density function f(a). A vector-valued quantity
a is indicated by underlining the corresponding identifier
and matrices are always referred to with bold face capital
letters, e.g., A. The notation ak refers to the quantity a at
time step k. Furthermore, ak|t denotes the quantity a at time
step k based on information up to time t. For the vector
[xa, xa+1, . . . , xb], we use the abbreviated notation xa:b.

D. Outline

The remainder of the paper is organized as follows: In
the next section, the considered problem is defined and the
assumptions made are listed. Then, the proposed controller
scheme for NCSs is described in detail and stability proper-
ties are examined. Section VI presents simulation results with
an inverted pendulum and compares the proposed approach
to a standard NCS technique. A summary and an outlook to
future work concludes the paper.

II. CONSIDERED PROBLEM

Throughout the paper, we consider a discrete-time linear
dynamic plant described in state-space form via

xk+1 = Axk +Buk +wk , (1)

where xk ∈ Rs denotes the system state at time step k and
uk ∈ Rn the control input actually applied by the actuator.
Note that due to time delays and packet losses in the network,
uk may differ from the control input the controller intended
to apply. The system noise is subsumed by wk ∼ fw(wk)
and is assumed to be a zero-mean Gaussian noise process.
Furthermore, the system matrices A ∈ Rs×s and B ∈ Rs×n
are known. The components of the control loop are time-
triggered, synchronized and have identical cycle times.

In this paper, we restrict our considerations to the case,
where the communication network is solely present in the
controller-to-actuator link. For simplicity, we further assume

that the controller has perfect information about the current
system state xk of the plant, i.e., the system state is com-
pletely measurable by the sensor and the connection between
sensor and controller is perfect.

The employed network is capable of transmitting large
time-stamped data packets and does not provide acknowl-
edgements for successfully transmitted data as in UDP-like
protocols. The data transmission might be subject to time-
varying delays and randomly occurring packet losses, for
which static probabilistic descriptions in form of probability
density functions are given. For the rest of the paper, we
subsume both the distribution over the time delays, as well
as the occurrence probability of packet losses into a single
probability density fτ (τk) by interpreting packet losses as
infinitely long time delays.

Finally, we assume that a controller with a linear state
feedback control law

uk = L · xk (2)

is given that is designed without consideration of the
network-induced disturbances.

In the following, we propose a scheme that extends this
given non-networked controller (2) in such a way that it can
deal with time delays and packet losses.

III. SEQUENCE-BASED CONTROL

In this section, we briefly review the general concept of
sequence-based control as, e.g., used in [6], [7], [8], [9],
[10], [14], because our control approach presented in the
next section is based on this fundamental control concept.

In sequence-based control, the controller generates not
only a single control input for the current control cycle, but
also control inputs for future N time steps (with N ∈ N).
The entire control input sequence is lumped into one data
packet and sent over the network to the actuator. The actuator
is equipped with a buffer in which the most recent control
input sequence is held, i.e., that sequence that has the latest
time stamp among all received packets. Therefore, when a
new packet is received by the actuator, it is taken into the
buffer if its time stamp is later than the one of the packet
already held in the buffer, else it is neglected. Finally, in
every time step, the actuator applies the appropriate control
input of the buffered sequence to the plant, i.e., that control
input of the sequence that corresponds to the current time
step.

In the following, we will denote the control input sequence
generated by the controller at time k by Uk. An entry of that
packet is denoted by uk+m|k with m ∈ {0, 1, ..., N}, where
the first part of the index (here: k+m) gives the time step, for
which the control input is intended to be applied to the plant.
The second part of the index (here: k) specifies the time step,
when the control input was generated. For a packet of length
N + 1 generated in time step k, this gives

Uk =
[
uTk|k uTk+1|k . . . uTk+N |k

]T
. (3)



For example, let us assume the controller packet Uk is
received by the actuator at time step k + τk with τk ∈ N. If
none of the packets

Uk+1, Uk+2, . . . , Uk+τk (4)

has been received by the actuator so far, then the buffer is
overwritten with the entries of Uk and the entry uk+τk|k of
Uk is applied to the plant. Otherwise, if the actuator has
received any packet from (4) until time step k+ τk, then Uk
is neglected and the entry uk+τk|k+i of the buffered sequence
Uk+i is applied.

Since we do not assume that the time delays are bounded,
it may happen that the buffer runs empty. In this case, the
controller applies a default control input ud.

It is obvious that the control inputs applied by the actuator
depend on the packet delays as well as losses and, therefore,
inherit the stochastic nature of the network. This gives rise to
the stochastic control approach discussed in the next section.

IV. SEQUENCE-BASED CONTROL WITH
VIRTUAL CONTROL INPUTS

A. Virtual Control Inputs

In this section, we introduce the novel concept of virtual
control inputs. To that end, we first define the information set
Ik that summarizes the information the controller can use at
time step k to calculate Uk. Considering causal controllers,
the information set includes all measurements and all control
packets that were received and sent until time step k.
Furthermore, the information set contains the information
about the given feedback matrix L, the dynamics of the
system D given by (1), the buffering logic B of the actuator
described in Sec. III, and the stochastic characteristics of
the process noise and the delay distribution of the nework
according to

Ik1 = {x0:k, U0:k−1;L,D,B, fw(wk), fτ (τk)} .

Based on Ik, we define the virtual control inputs (VCI) as
follows.

Definition 1 (Virtual Control Inputs) A virtual control in-
put uvk+m|k ∼ f(uvk+m|k) is a prediction of the control
input uk+m conditioned on the information set Ik (with
k,m ∈ N), so that

f(uvk+m|k) = f(uk+m|Ik) .

To derive the probability density function f(uvk+m|k) of the
virtual control inputs uvk+m|k, we note that based on the
information set Ik, there is only a finite set of discrete values
of control inputs that could be applied by the actuator. This
is illustrated in Fig. 2 for the case of N = 2, where the
control inputs possibly applied at time step k are marked by
the red rectangle. It should be noted that although this finite
set of control inputs is discrete, the control inputs itself are

1The information set does not include the information that the controller
will generate and sent control input sequences to the actuator in the future.

over a continuous domain. The structure of the uncertainty
can formally be described by a Dirac mixture density

f(uvk+m|k) =

[
N−m∑
i=0

α
(i)
k+m|k · δ(uvk+m|k − uk+m|k−i)

]
+α

(N−m+1)
k+m|k · δ(uvk+m|k − ud) ,

where m ∈ {0, 1, · · · , N}, the terms α(i)
k+m|k are scalar

weighting factors with
N−m+1∑
i=0

α
(i)
k+m|k = 1, and δ() is

the Dirac delta function. The weighting factors express the
probability that the corresponding control input uk+m|k−i is
applied by the actuator, i.e.,

α
(i)
k+m|k = Prob(uk+m = uk+m|k−i|Ik) .

The control input uk+m|k−i is applied by the actuator if the
sequence buffered in the actuator at time step k+m has been
generated by the controller k+m−(k−i) = m+i time steps
ago. In other words, uk+m|k−i is applied by the actuator if
the age of the buffered sequence, i.e., the difference between
time step of generation and actual time step, at time step
k +m is equal to m + i. Denoting the age of the buffered
sequence at time step k by the random variable θk, it holds
that

α
(i)
k+m|k = Prob(θk+m = i|Ik) .

It has been shown in [15] and [16] that θk can be described
as state of a Markov chain with transition matrix P, which
depends on fτ (τk). Furthermore it has been shown that θk+m
(and therefore α

(i)
k+m|k) can be optimally estimated and

predicted using the Wonham filter. However, this estimation
leads to time-varying weighting factors. For the remainder
of this paper, we approximate the weighting factors α(i)

k+m|k
by its stationary probability solution limk→∞α

(i)
k|0 = α

(i)
∞ ,

which is also described in [15] and [16]. This stationary
solution has the advantage that all weighting factors are time-
invariant and the control inputs can be calculated easier. Fur-
thermore, results on the stability of the closed-loop system
can be obtained (see Sec. V). It should be noted, however,
that the controller described in the next chapter can also be
implemented using the exact, time-varying weighting factors.

Finally, we calculate the expected values of the virtual
control inputs, since these will be needed in the derivation
of the controller in the next chapter. For the expected, it holds

E
{
uvk+m|k

}
=

∫ ∞
−∞

uvk+m|k f(u
v
k+m|k) du

v
k+m|k

=

∫ ∞
−∞

uvk+m|k

(
N−m∑
i=0

α
(i)
k+m|k δ(u

v
k+m|k − uk+m|k−i)

+α
(N−m+1)
k+m|k δ(uvk+m|k − ud)

)
duvk+m|k

=

N−m∑
i=0

α
(i)
k+m|k uk+m|k−i +α

(N−m+1)
k+m|k ud , (5)
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Fig. 2. Schematic illustration of the transmitted packets. Control inputs corresponding to the same time step are vertically aligned. For example, the
control inputs that could be potentially applied by the actuator at time step k are indicated by the red rectangle. The yellow entries denote the default
control inputs that would be employed if the buffer runs empty.

which becomes with the steady state approximation

E
{
uvk+m|k

}
≈
N−m∑
i=0

α(i)
∞ uk+m|k−i+α

(N−m+1)
∞ ud . (6)

B. Controller Design
This subsection describes how to design the sequence-

based controller if a linear feedback controller uk = L · xk
is given, where the feedback matrix L has been designed
for the plant (1) without consideration of network effects by,
e.g., pole placement or another control method, such as LQR,
H2, or H∞. In the following, we use the feedback matrix L
to generate control input sequences based on the predicted
future states of the plant.

Based on the measured state xk at time step k, the entries
of the control input sequence Uk are calculated by

uk|k = L · xk , (7)
uk+1|k = L · E{xk+1|Ik} , (8)

...
uk+N |k = L · E{xk+N |Ik} . (9)

The future states xk+m are random with respect to the
process noise and the virtual control inputs. The condi-
tional expectation of the future states, E{xk+m|Ik}, can be
calculated by

E{xk+m|Ik}
= E{Axk+m−1 +Buk+m−1 +wk+m−1 |Ik}
= A · E{xk+m−1|Ik}+B · E{uvk+m−1|k}
≈ A · E{xk+m−1|Ik}

+B ·
(
N−m+1∑
i=0

α(i)
∞ uk+m−1|k−i +α

(N−m+2)
∞ ud

)
=
(
A+ α(0)

∞ BL
)
E{xk+m−1|k} (10)

+B ·
(
N−m+1∑
i=1

α(i)
∞ uk+m−1|k−i + α(N−m+2)

∞ ud

)
.

For taking the expected value, we use (5) and the assump-
tion that wk+m−1 is zero-mean and independent of xk+m−1
and uk+m−1. Equation (10) shows that the expected value
of the predicted state can be calculated recursively, which
basically results from the fact that the state equation of the
plant and the expectation operation are linear. The recursive
formulation of the control algorithm given by (9) and (10)
is efficient for practical implementation.

To analyze the stability of the closed-loop system in the
next section, we additionally derive an explicit formulation
of the controller. To that end, we introduce the augmented
state

ψ
k
=
[
xTk ηT

k

]T
, (11)

with

η
k
=



[uTk|k−1 uTk+1|k−1 · · · uTk+N−1|k−1]
T

[uTk|k−2 uTk+1|k−2 · · · uTk+N−2|k−2]
T

...
[uTk|k−N+1 uTk+1|k−N+1]

T

uk|k−N
ud


.

The vector η
k

contains the default control input and all
control inputs of the already sent control input sequences
Uk−1, Uk−2, . . ., Uk−N that still could be applied in time
step k or later. Using (3), (9), (10), and (11), the controller
can be formulated as a linear state feedback controller given
by

Uk =


uk|k
uk+1|k

...
uk+N |k

 =


L · xk

L · E{xk+1|Ik}
...

L · E{xk+N |Ik}}

 = L̃ · ψ
k
. (12)

Due to space constraints, we refer to [16] for a detailed
description and derivation of the matrix L̃.



V. STABILITY OF THE PROPOSED APPROACH

In this section, we will derive a criterion for closed-loop
stability of the proposed controller. Therefore, a model of
network and actuator is derived, that, in a second step, will be
combined with the model of the plant (1) and the controller
(12). Based on η

k
and θk as introduced in section IV-A, the

combined state space model of network and actuator can be
formulated similar as in [17] as

η
k+1

= Fη
k
+GUk , (13)

uk = Hθkηk + JθkUk , (14)

with

F =


0 0 0 0 · · · 0 0
0 I 0 0 · · · 0 0
0 0 0 I · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · I 0

 ,
G =

[
0 I
0 0

]
,

Jθk =
[
δ(θk,0) I 0

]
,

Hθk =
[
δ(θk,1) I 0 δ(θk,2) I 0 · · · δ(θk,N) I

]
,

where the 0’s are matrices with all elements equal to zero and
the I’s are identity matrices, each of appropriate dimension.
The term δ(θk,i) is the Kronecker delta, which is defined as

δ(θk,i) =

{
1 if θk = i
0 if θk 6= i

.

By using the augmented state ψ
k

from (11) and combining
(1), (13), and (14), it holds

ψ
k+1

=

[
A B ·Hθk

0 F

]
ψ
k
+

[
B · Jθk

G

]
Uk +

[
wk

0

]
.

Using (12) results in

ψ
k+1

=

([
A B ·Hθk

0 F

]
−
[
B · Jθk

G

]
· L̃
)
ψ
k
+

[
wk

0

]
= Ãθkψk + w̃k . (15)

The closed-loop system described by (15) can be interpreted
as an inhomogeneous Markovian jump linear system (MJLS).
For this kind of system, several results on mean square
stability are available in the literature, e.g., [18] and [19]. In
the following, we adopt the concept of mean square stability
and proof from [18].

Definition 2 The system (15) with Markovian jump param-
eter θk is mean square stable (MSS), if for any initial
condition θ0 ∈ {0, 1, · · · , N} and ψ

0
∈ Rd+s there exist

a bounded µ ∈ Rd+s and a symmetric positive-semidefinite
matrix M (independent of ψ

0
and θ0) such that

lim
k→∞

E
{
ψ
k

}
= µ , (16)

lim
k→∞

E
{
ψ
k
ψT
k

}
= M . (17)

Mass of the cart 1.096 kg
Mass of the pendulum 0.109 kg
Friction of the cart 0.1 N/m/s
Length to pendulum center of mass 0.25 m
Inertia of the pendulum 0.0034kg · m2

TABLE I
PARAMETERS OF THE INVERTED PENDULUM USED IN THE

SIMULATIONS.

Theorem 1 The system (15) with Markovian jump parameter
θk and transition matrix P is stable in the mean square
sense, if and only if

rσ((P
T ⊗ In2) · diag[Ãi ⊗ Ãi]) < 1 , (18)

where rσ (M) is the spectral radius of M and diag [Si] is
the block diagonal matrix built by Si in the diagonal with
i = {0, 1, ..., N} and zero everywhere else, i.e.,

diag [Si] =


S0 0 · · · 0
0 S1 · · · 0
...

...
...

...
0 0 · · · SN

 . (19)

Proof: The result follows from theorem 3.9 and 3.33
in [18].

VI. SIMULATION RESULTS
In this section, we evaluate the presented method by means

of simulations with an inverted pendulum on a cart, which
is a classical benchmark for illustrating the performance of
control techniques. A basic description of this experimental
setup can be found, e.g., in [20].

A. Simulation Setup

Table I shows the plant parameters of the inverted pendu-
lum used in the simulations.

The continuous differential equation is linearized and
discretized with sampling time 0.01 s, which results in the
discrete-time linear system model (1) with

A =


1 0.01 0 0
0 1 0 0
0 0 1.0015 0.01
0 0 0.2941 1.0015

 , B =


−0.0001
−0.01
0.0002
0.03

 .

For realization of (2), a classical LQR controller is deployed
[21]. The LQR minimizes the cumulated costs given by

∞∑
k=0

xTkQxk + uTkRuk . (20)

Choosing the weighting matrices of the cumulated costs with

Q =


5 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , R = 0.1 ,

results in a feedback matrix L of the LQR with

L =
[
6.57 5.95 36.21 6.66

]
.



0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

→Delay

→
Pr

ob
ab

ili
ty

→Delay

→
Pr

ob
ab

ili
ty

∞ ∞

network Bnetwork A

Fig. 3. Probability density functions over the time delays of the two networks considered in the evaluation.

NNC VCI-NCS Det-NCS
σw = 0.001 / network A 14.0 14.3 14.4
σw = 0.005 / network A 28.4 37.5 38.2
σw = 0.01 / network A 76.3 113.3 116.7
σw = 0.001 / network B 14.0 14.3 14.4
σw = 0.005 / network B 27.7 36.5 37.6
σw = 0.01 / network B 75.3 111.4 117.1

TABLE II
CUMULATED COSTS AVERAGED OVER THE 100 MONTE CARLO RUNS.

At every time step k, we add a process noise wk to the
angle φk of the pendulum, which is characterized by a zero-
mean Gaussian noise with varying standard deviation σw.
The length of the transmitted packets is N = 9 and the
default input udk is set to 0. The initial state vector x0 is

x0 =
[
x0 ẋ0 φ φ̇

]T
=
[
0 0 0.1 0

]T
.

In order to simulate the transmission characteristics of the
network, the two probabilistic models depicted in Fig. 3 are
employed.

Overall, we conduct 100 Monte Carlo simulation runs with
varying standard deviations σw of the process noise, where
each run takes 5 seconds.

We compare the proposed technique for NCS with virtual
control inputs (VCI-NCS) to two other approaches. For better
analyzing the quality of the compensation technique for time
delays and packet losses, we first consider a classical non-
networked LQR (abbreviated by NNC) with a transparent
connection between controller and actuator. In this case, all
calculated control inputs uk = L · xk are received by the
actuator without any time delay. Consequently, the control
quality of NNC can be seen as a ground truth for the NCS
control methods.

Furthermore, we compare VCI-NCS to a widely used
sequence-based controller that sends at every time step a
sequence of control inputs resulting from a deterministic state
prediction (Det-NCS) [8], [13]. In more detail, the packet Uk
sent in time step k contains the entries

uk|k = L · xk|k ,
uk+1|k = L · xk+1|k ,

...
uk+N |k = L · xk+N |k ,

where xk+i|k for 1 ≤ i ≤ N is determined according to

xk+i|k = Axk+i−1|k +Buk+i−1|k .

Consequently, when using this NCS control technique, the
packet entries exclusively depend on the current system state
xk. In particular, the potential influence of the actuator buffer
content on the future system behavior is not considered in
the packet design.

B. Results

In Fig. 4, an example state trajectory of a simulation run
with network A and a standard deviation σw = 0.01 is
depicted. Compared to Det-NCS, the state trajectory of the
VCI-NCS shows a lower deviation from the setpoint. Further-
more, the VCI-NCS trajectory is closer to the trajectory of
the non-networked controller NNC. Thus, for this example,
the proposed method seems to be an adequate technique for
compensating time delays and packet losses in NCSs.

In order to make more general, quantitative statements, we
conducted 100 Monte Carlo simulation runs with different
parameter settings. For each setting, the resulting were
calculated according to (20) and averaged over all runs. The
results are shown in Table II. For small process noise, the
results of Det-NCS and VCI-NCS are very similar. This
results from the fact, that due to the low pertubation all
control inputs possibly applied at a certain time step, i.e.,
all buffered control inputs and the entries of the calculated
control sequence, differ only marginally. With increasing
process noise, however, the variance of these control inputs
gets higher and they may differ more significantly. This
explains why the propopsed VCI-NCS strategy, which ex-
plicitly considers the variance of the control inputs, results in
a significantly lower cost compared to the Det-NCS strategy.

VII. CONCLUSIONS

We presented a novel sequence-based control scheme for
NCS, which explicitly incorporates communication aspects
during the design of the packets. The key idea of our
approach is that the controller subsumes its knowledge about
the control inputs potentially applied by the actuator in form
of a discrete probability density, the so-called virtual control
inputs. Based on this probabilistic description and a given
state feedback control law, the controller calculates a high-
quality sequence of future control inputs. In contrast to
existing sequence-based control approaches, the content of
the actuator buffer, which has obviously a significant effect
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Fig. 4. Example state trajectory for a single simulation run with network A and a standard deviation σw = 0.01 of the process noise. The result of
the controller without a network (NNC) is depicted with a solid black line ( ), the proposed approach VCI-NCS with a dashed red ( ), and the
Det-NCS with a dotted blue ( ) line.

on the future system behavior, is explicitly considered in the
calculation of the packet entries.

To the best of our knowledge, the concept of virtual
control inputs is innovative and promising, especially since
simulation results with an inverted pendulum shows an
excellent performance of the proposed approach, even in
comparison to standard NCS methods.

Future work will be concerned with the TCP case, in
which the controller receives time-delayed acknowledge-
ments of successfully transmitted packets. This additional
information allows component reduction of the involved
probability density functions and hence, a more precise
prediction of the future system behavior can be achieved.
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