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Abstract— Greedy procedures for suboptimal Dirac mixture
approximation of an arbitrary probability density function are
proposed, which approach the desired density by sequentially
adding one component at a time. Similar to the batch solutions
proposed earlier, a distance measure between the corresponding
cumulative distributions is minimized by selecting the corre-
sponding density parameters. This is due to the fact, that a
distance between the densities is typically not well defined
for Dirac mixtures. This paper focuses on the Cramér–von
Mises distance, a weighted integral quadratic distance measure
between the true distribution and its approximation. In contrast
to the batch solutions, the computational complexity is much
lower and grows only linearly with the number of components.
Computational savings are especially severe, when the required
number of components, e.g. the minimum number of compo-
nents for achieving a given quality measure, is not a priori
known and must be searched for as well. The performance of
the proposed sequential approximation approaches is compared
to the optimal batch solutions.

NOTATION

f(x) density function
F (x) (cumulative) distribution function
δ(x) Dirac delta function
H(x) Heaviside step function

G distance measure
η parameter vector of Dirac mixture
κ parameter vector of Gaussian mixture

N (.,m, σ) Gaussian density with mean m
and standard deviation σ

I. INTRODUCTION

Nonlinear processing of random quantities described by
(prior) probability density functions in general requires the
approximation of the resulting (posterior) densities. The
true densities might not be explicitly available because the
calculation is either too complex or even impossible. In most
cases, the resulting densities are simply of a type that is not
well suited for further treatment. Hence, the true posterior
density, i.e., the result of the processing step, is approximated
by means of a density that is more convenient for subsequent
processing steps. Many types of generic analytic density
representations are available for that purpose, including
Gaussian mixtures [1], Edgeworth series expansions [2], and
exponential densities [3].

As an alternative representation, we propose to use mix-
tures of Dirac delta functions (impulse functions), so called
Dirac mixtures, for approximating the underlying true den-
sities in analytic form. This is different from representing
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densities by means of random samples [4], which is used by
the popular particle filters [5], where the appropriate density
parameters, i.e., weights and locations of the particles, are
typically calculated by means of Monte Carlo techniques [6],
[7].

The proposed approach for calculating an optimal Dirac
mixture approximation for a given density relies on the sys-
tematic minimization of a certain distance measure between
the two densities. Standard distance measures operating in
the density domain such as the Kullback–Leibler distance [8],
its symmetrized version [9], or integral quadratic distances
are obviously not well suited for Dirac mixtures. Hence,
comparison is performed in the distribution domain. As a
result, the fundamental property of the Dirac delta function
in the density domain can be exploited to simplify processing
while the continuity of the corresponding staircase function
in the distribution domain is used for comparison purposes.

Several approaches that simultaneously calculate the lo-
cations and weights of all components, so-called batch
approaches, have already been published. The case of com-
ponents with equal weights is treated in [10]. A method for
the simultaneous calculation of optimal weights and locations
is given in [11]. For both cases, efficient solution procedures
for arbitrary true densities based on a homotopy continuation
technique have been proposed.

Typically, the number of components required for achiev-
ing a certain approximation quality is not known a priori and
must be determined as well. Two approaches for doing so
are possible on the basis of the available batch solutions.
The first approach relies on trying different numbers of
components suitable for the given approximation problem
and employs certain heuristics in order to avoid an exhaustive
search. For every number of components investigated, a full
recalculation is performed [12]. The second approach adds
new components one at a time and adjusts all components to
guarantee optimality of the resulting approximation [13]. In
both approaches, the complexity of the parameter adjustment
grows at least quadratically with the number of Dirac mixture
components.

The greedy approaches proposed in this paper also build
up the final approximate density by sequentially adding one
component at a time. However, the components are inserted
locally without affecting the set of components already
placed. This procedure yields suboptimal results at a much
lower computational load compared to the batch approaches.
The complexity grows linearly with the number of com-
ponents. As a result, computational savings are especially
severe, when an exhaustive search is used for finding the
minimum number of components required to satisfy a certain
predefined quality measure.



Potential applications of the greedy approximation in-
clude the calculation of the density of a function of ran-
dom variables, long–term prediction [13], state estimation
of nonlinear stochastic systems [11], reachability analysis,
numerical integration, and even the generation of pseudo–
random numbers.

The paper is structured as follows. The next section gives
a mathematical formulation of the problem of approximating
a given density by means of a Dirac mixture. Section III is
concerned with several possible approaches for determining
the parameters of a desired Dirac mixture approximation.
Subsection III-A starts with the simplest problem of calcu-
lating the weights of a Dirac mixture approximation when
all the locations are already known. Subsection III-B then
considers the dual case of given weights and the calculation
of appropriate locations. This of course also includes the
interesting special case of equally weighted components.
Finally, Subsection III-C discusses the most general case of
calculating weights and locations simultaneously. In all three
cases, batch approaches and their sequential counterparts are
introduced. Section IV is concerned with the identification
of critical locations for inserting new components. Several
viable options are discussed for that purpose. Section V com-
pares the two solution approaches, i.e., the batch approach
and the sequential approach, introduced in Subsection III-C.
The paper concludes with a discussion of the proposed new
approximation approaches and an outlook to future work.

II. PROBLEM FORMULATION

We consider a given true probability density function f̃(x)
that is approximated by means of a Dirac mixture density
given by

f(x, η) =
L∑

i=1

wi δ(x − xi) , (1)

with weighting factors wi and components δ(x − xi) at
locations xi. The components are given by Dirac delta
functions according to

δ(x − xi) =

{
undefined, x = xi

0, elsewhere
,

with
∞∫

−∞
δ(x − xi) dx =

xi+ε∫
xi−ε

δ(x − xi) dx = 1

for some ε > 0.
The parameter vector η contains both the weighting factors

and the locations of the individual Dirac functions according
to

η =
[
w1, w2, . . . , wL, x1, x2, . . . , xL

]T
.

The weighting factors are positive

wi > 0

for i = 1, . . . , L and sum up to one according to
L∑

i=1

wi = 1 .

The distribution function corresponding to the true density
f̃(x) is denoted by F̃ (x). The distribution function corre-
sponding to the approximate density f(x, η) is denoted by
F (x, η) and is given by a Heaviside mixture according to

F (x, η) =
L∑

i=1

wi H(x − xi) .

H(x − xi) are Heaviside step functions for i = 1, . . . , L
given by

H(x − xi) =

⎧⎪⎨
⎪⎩

0, x < xi

1
2 , x = xi

1, x > xi

.

Our goal is to perform a sequential approximation of
f̃(x) by starting with a single Dirac mixture component and
subsequently adding one component at a time according to a
certain criterion, until a certain distance measure G between
the given density f̃(x) and its approximation f(x) is below a
given threshold. As distance measures in the density domain
are typically not well defined for Dirac mixture densities,
distance measures between (cumulative) distributions are
employed. In the following, we restrict our focus to quadratic
distance measures evaluated on the interval [xmin, xmax].

III. POSSIBLE APPROACHES

In this section, three types of approximation approaches
will be introduced. In all cases, a batch solution, i.e., a
solution considering the parameters of all components simul-
taneously, is introduced first. Subsequently, corresponding
suboptimal sequential versions are derived that are all of
greedy type and based on inserting components one at a
time.

Remark III.1 In all approaches considered, intervals be-
tween Dirac components are considered for inserting new
component. Of course, inserting a new component only
makes sense, when the true distribution F̃ (.) is strictly
increasing over the considered interval.

The first and most simple approach is based on given
component locations so that only the weighting factors have
to be adapted. The second approach is dual to the first
approach in the sense that here the weights are fixed a priori
and the locations remain to be calculated. In the third and
most general approach, both weights and locations of the
components are calculated.

A. First Approach: Calculation of Weights for Fixed Loca-
tions

The first approach assumes that the component locations
have been fixed a priori and only the weighting factors
remain to be calculated.

1) Batch Approach: The component locations are given
at arbitrary, but fixed positions xi for i = 1, . . . , L. Although
the calculation of the corresponding weights works for arbi-
trary locations, we assume that the components are placed
at equidistant locations

xi = xmin +
d

2
+ (i − 1)d = xmin +

2i − 1
L

d ,



on the interval [xmin, xmax] with d = (xmax − xmin)/L. The
locations of the first and the last component are given as

x1 = xmin +
d

2
and

xL = xmin +
2L − 1

2
d = xmax − d

2
,

respectively.
Of course, the corresponding weights wi could be calcu-

lated according to some optimality criterion, e.g. by adapting
the procedure given in Subsection III-C.

A simpler approach is to view the components as being
the center of intervals of width d and to select the weighting
factors in such a way that the distributions at the ends of these
intervals are identical, i.e., F (xi − d/2) = F̃ (xi − d/2) and
F (xi + d/2) = F̃ (xi + d/2).

This is achieved by selecting the corresponding weights
of the approximating distribution as

wi = F̃

(
xi +

d

2

)
− F̃

(
xi − d

2

)
,

for i = 1, . . . , L.
2) Sequential Approach: The sequential approach is based

on replacing a single component by two components with
smaller weights. This is achieved by splitting the interval
containing the single component into two intervals of equal
width. When splitting is performed in such a way that all
the resulting intervals are of equal sizes, this yields the
same approximation density as the batch approach. A more
efficient solution is obtained when replacing a component
by two new components only when the distance between
the true distribution F̃ (xi) and its approximation in the
corresponding interval is large, see Section IV. By doing so,
the sequential procedure automatically provides non–equally
spaced components.

B. Second Approach: Calculation of Location for Fixed
Weights

The second approach assumes that the weighting factors
have been fixed a priori and only the component locations
remain to be calculated.

For the case of equally weighted components, an optimal
batch solution has been derived in [10], so that only the
results will be given here.

1) Batch Approach: For L equally weighted compo-
nents, the weighting factors are given by wi = 1/L for
i = 1, . . . , L. For an integral quadratic distance measure G
between the true distribution F̃ (xi) and its approximation
according to

G =

∞∫
−∞

(
F̃ (x) − F (x)

)2

dx , (2)

the optimal locations are given by

F̃ (xi) =
2i − 1

2L
(3)

for i = 1, . . . , L [10]. It is important to note that the locations
xi can be calculated independently of each other.

xi xk x

F̃ (x), F (x)

xj

w∗
i

wk

Fig. 1. Inserting a component in a regular interval at location xk with
weight wk .

2) Sequential Approach: The sequential version succes-
sively divides the range of values of F̃ (xi) between 0 and 1
into subintervals of equal size. For every new subinterval, a
new component is inserted.

The approximation process is started by placing a single
component with unit weighting factor at a location corre-
sponding to F̃ (x1) = 1/2, which corresponds to setting
L = 1 in (3) and yields the median of f̃(x). Subsequent
components are then placed by splitting up the resulting
intervals recursively. As can easily be seen, the sequential
solution provides the same result as the batch solution when
every interval is split into equal sizes. However, a more effi-
cient solution is achieved when inserting a new component
in a certain interval only when the distance between the true
distribution F̃ (xi) and its approximation is large, see Sec. IV.
In that case, the sequential procedure automatically provides
different weighting factors from the set

W =
{

1
2j

, j = 0, 1, 2, . . .

}

depending upon the splitting level reached in the approximate
density.

C. Third Approach: Calculation of Weights and Locations

The third approach is the most general as it calculates
the weighting factors and the component locations simulta-
neously.

1) Batch Approach: The optimal batch solution for the
simultaneous calculation of the weighting factors and the
component locations has been derived in [11].

2) Sequential Approach: In this section, we assume that
the critical location for inserting a new component is already
known. The new component is then inserted in such a way —
by selecting appropriate values for the weighting factor and
the component location — that a distance measure between
the true density and its approximation is minimized. The
identification of critical locations will be discussed in the
next section.

In the special case of scalar densities, it is sufficient to
consider the intervals between Dirac components and the
two border intervals, i.e., the interval from xmin to x1 and
the interval from xL to xmax. The border cases, i.e., adding
a new component to the left or to the right of an existing
Dirac mixture, require special attention and will be treated
separately from the regular intervals.



For a regular interval, we assume that it is defined by two
components indexed by i and j. A third component indexed
by k is then inserted in between.

For determining the parameters of the new component
according to Figure 1, a distance measure

G(w∗
i , wk, xk) =

1
2

xj∫
xi

(
F̃ (x) − w∗

i − wkH(x − xk)
)2

dx

is defined, where w∗
i is the absolute value of the approximate

distribution at location xi and wk the weight at location xk.
Taking the partial derivatives with respect to w∗

i , wk, and xk
gives three necessary conditions

∂ G

∂ w∗
i

=

xjZ
xi

“
F̃ (x) − w∗

i − wkH(x − xk)
”

dx
!
= 0 ,

∂ G

∂ wk
=

xjZ
xi

“
F̃ (x) − w∗

i − wkH(x − xk)
”

H(x − xk) dx
!
= 0 ,

and

∂ G

∂ xk
=

xjZ
xi

“
F̃ (x) − w∗

i − wkH(x − xk)
”

wk δ(x−xk) dx
!
= 0 .

After simplification, we obtain three equations
xj∫

xi

F̃ (x) d x = w∗
i (xj − xi) + wk(xj − xk) ,

xj∫
xk

F̃ (x) d x = (w∗
i + wk)(xj − xk) ,

and
F̃ (xk) = w∗

i +
wk

2
.

Solving this system of equations yields a nonlinear equation
in xk only, which is given by

xk∫
xi

F̃ (x) dx

xk − xi
+

xj∫
xk

F̃ (x) dx

xj − xk
= 2 F̃ (xk) .

Once the optimal location xk is known, the weighting factors
are obtained as

w∗
i =

xk∫
xi

F̃ (x) dx

xk − xi

and

wk =

xj∫
xk

F̃ (x) dx

xj − xk
− w∗

i .

Now, the cases of adding a component to the left or to
the right of an existing Dirac mixture are derived. For the
left border interval, i.e., the interval between xmin and the

xmin xk x

F̃ (x), F (x)

x1

wk

Fig. 2. Inserting a component in the left border interval at location xk
with weight wk .

first component, the distance measure according to Figure 2
is given by

G(wk, xk) =
1
2

x1∫
xmin

(
F̃ (x) − wkH(x − xk)

)2

dx ,

and two necessary conditions can be obtained. The first
condition is

∂G

∂wk
=

x1∫
xmin

(
F̃ (x) − wkH(x − xk)

)
H(x − xk) dx

!= 0 ,

resulting in

x1∫
xk

F̃ (x) dx = wk(x1 − xk) .

The second condition is obtained as

∂G

∂xk
=

x1∫
xmin

(
F̃ (x) − wkH(x − xk)

)
wkδ(x − xk) dx

!= 0 ,

which yields

F̃ (xk) =
1
2
wk . (4)

Eliminating wk gives a single nonlinear integral equation for
xk

2F̃ (xk) =

x1∫
xk

F̃ (x) dx

x1 − xk
.

Once xk has been calculated, the weighting factor wk is
obtained from (4).

For the right border interval, i.e., the interval between the
last component and xmax, the distance measure according to
Figure 3 is given by

G(w∗
L, xk) =

1
2

xmax∫
xL

(
F̃ (x) − w∗

L

−
(
F̃ (xmax) − w∗

L

)
H(x − xk)

)2

dx ,



xL xk x
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Fig. 3. Inserting a component in the right border interval at location xk
with weight wk .

where w∗
L = 1 − wk, which leads to

∂G

∂w∗
L

= −
xmax∫

xL

(
F̃ (x) − w∗

L −
(
F̃ (xmax) − w∗

L

)

· H(x − xk)
)
(1 − H(x − xk)) d x

!= 0 .

Simplification yields
xmax∫

xL

(
F̃ (x) − w∗

L

)
(1 − H(x − xk)) dx

!= 0

and finally
xk∫

xL

F̃ (x) dx = w∗
L(xk − xL) .

The derivative of G(w∗
L, xk) with respect to xk gives

1
2

xmax∫
xL

(
F̃ (x) − w∗

L − (F̃ (xmax) − w∗
L)

· H(x − xk)
)
δ(x − xk) dx

!= 0 ,

which leads to

w∗
L = 2 F̃ (xk) − F̃ (xmax) . (5)

The elimination of w∗
L again gives a single nonlinear integral

equation for xk

2F̃ (xk) − F̃ (xmax) =

xk∫
xL

F̃ (x) dx

xk − xL
.

Once xk has been calculated, the weighting factor w∗
L is

obtained from (5) and wk = 1 − w∗
L.

For starting the sequential approximation process, we have
to perform an initialization, that is, we have to place the first
component. The corresponding distance measure between the
true distribution and its approximation is given by

G(xk) =
1
2

xmax∫
xmin

(
F̃ (x) − H(x − xk)

)2

dx .

Taking the derivative with respect to xk gives the necessary
condition

∂ G

∂ xk
=

xmax∫
xmin

(
F̃ (x) − H(x − xk)

)
δ(x − xk) dx

!= 0 ,

which leads to
F̃ (xk) =

1
2

. (6)

The solution xs
k of this equation yields a minimum of G(xk),

since the second derivative of G(xk) is larger than zero, i.e.,

∂2 G(xk)
∂ x2

k

∣∣∣∣
xs

k

=
∂ F̃ (xk)

∂ xk

∣∣∣∣
xs

k

> 0 .

Remark III.2 The condition in (6) is equivalent to placing
the first component at the median of the given density f̃(x).

IV. IDENTIFICATION OF CRITICAL LOCATIONS

There are several options available for selecting the spe-
cific interval between Dirac mixture components used for
inserting a new component.

When we consider the deviation between the true prior and
its approximation, the first option is to determine the interval
with the maximum deviation. Unfortunately, closed–form
expressions for the deviation are not available for most types
of true densities, not even for Gaussian mixtures. However,
since distributions are always monotonically increasing, an
interval containing the true value of the deviation can easily
be calculated by means of upper/lower-bounding techniques
to an arbitrary precision.

In the special case of a Gaussian mixture (true) prior, an
analytic expression for the absolute deviation

G =
∫ xj

xi

∣∣∣F̃ (x) − F (x)
∣∣∣ dx

between the true prior distribution F̃ (x) and the approximate
prior F (x) over the interval [xi, xj ] can be derived by
adding up the areas between the true distributions. The
second option is to determine the interval where inserting
a new component leads to the maximum reduction of the
deviation between the true prior and its approximation, which
is typically different from the result according to the first
option. The disadvantage of this option is the necessity
of performing the insertion procedure for every interval
considered, before the reduction can be calculated.

V. COMPARISON WITH BATCH OPTIMIZATION

In this section, we focus on the methods for calculating
both weights and locations given in Subsection III-C. After
a comparison of the features of the batch approach and its
sequential counterpart in Subsection V-A, the performance
of the two approaches will be compared by means of
simulations in Subsection V-B.

A. Comparison of Features
The features of the two approaches, batch solution and se-

quential solution, for calculating both weights and locations
given in Subsection III-C are compared in Table I.



TABLE I
COMPARISON OF THE FEATURES OF THE BATCH SOLUTION AND THE SEQUENTIAL SOLUTION GIVEN IN SUBSECTION III-C.

Batch Solution Sequential Solution

Optimality of approximation Optimal Suboptimal

Modification of number of components Recalculation required Addition of components one at a time

Computational complexity Quadratic in number of components Linear in number of components

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Fig. 4. Gaussian mixture density corresponding to the parameter vector
κ = [0.3, 0.4, 0.3,−1.0,−0.5, 1.5, 0.2, 0.5, 0.1]T .

B. Comparison by Simulations
For comparing the performance of the two approaches, a

Gaussian Mixture

f̃(x, κ) =
K∑

i=1

ci N (x, mi, σi)

is approximated by means of a Dirac mixture according to
(1). κ is the parameter vector given by

κ =
[
c1, . . . , cK ,m1, . . . ,mK , σ1, . . . , σK

]T
.

For evaluation purposes, we use K = 3 and
c1 = 0.3 , c2 = 0.4 , c3 = 0.3 ,

m1 = −1.0 , m2 = −0.5 , m3 = 1.5 ,
σ1 = 0.2 , σ2 = 0.5 , σ3 = 0.1 .

The corresponding Gaussian mixture density with three
components is depicted in Figure 4.

Dirac mixture approximations of this Gaussian mixture are
shown in Figure 5 for L = 5 (first row), L = 10 (second
row), and L = 15 (third row) components. The left column
corresponds to the Dirac mixtures calculated by means of
the batch solution in Subsection III-C 1). The right column
corresponds to the sequential solution in Subsection III-C 2).

The square root of the integral quadratic deviation ac-
cording to (2) between the true distribution F̃ (x, κ) and
the Dirac mixture approximation F (x, η) provided by the
two approaches is shown in Figure 6 for the number of
components L varying between 5 and 25. The batch solution
yields a better approximation quality, however, at a signifi-
cantly higher computational cost and the need for a complete
recalculation for every new number of components L.

VI. DISCUSSION AND FUTURE WORK

A procedure for the sequential enhancement of a Dirac
mixture approximation by successive insertion of new com-
ponents has been introduced. Compared to available batch
solutions [10], [11], the proposed sequential solutions pro-
vide suboptimal results but have a much lower computational
complexity. Furthermore, the complexity of the (optimal)
insertion of a new component does not depend upon the
number of components already available. Identification of
an (optimal) location for inserting a new component into a
given Dirac mixture approximation is at most linear in the
number of components.

In many applications, a Dirac mixture approximation with
a minimum number of components for achieving a certain
task is required. When an exhaustive search is conducted,
the proposed sequential approximation procedures are very
useful as they allow to successively increase the number of
components without extra effort. The successive application
of the batch solutions yields better results. However, the
higher computational complexity makes them unattractive in
this case.

Of course, it is possible to combine the advantages of
the sequential and the batch solution. The first combination
uses both solutions separately and consists of using the
sequential solution for estimating the appropriate number of
components and the batch solution for calculating the optimal
parameters of a mixture of this size. This is based on the
assumption that the sequential solution is not far from the
batch solution. The second combination is a bit tighter and
uses the batch solution as a subalgorithm of a greedy scheme
for calculating a local approximation that inserts more than
one new component.

Future work is concerned with sequential solution ap-
proaches capable of providing optimal approximations. Of
course, this requires the modification of the parameters of
all the already existing components when inserting a new
component. In addition, the order of component insertion at
specific locations is important.
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