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Abstract— The information filter has evolved into a key tool
for distributed and decentralized multisensor estimation and
control. Essentially, it is an algebraical reformulation of the
Kalman filter and provides estimates on the information about
an uncertain state rather than on a state itself. Whereas many
practicable Kalman filtering techniques for nonlinear system
and sensor models have been developed, approaches towards
nonlinear information filtering are still scarce and limited. In
order to deal with nonlinear systems and sensors, this paper
derives an approximation technique for arbitrary probability
densities that provides the same distributable fusion structure
as the linear information filter. The presented approach not
only constitutes a nonlinear version of the information filter,
but it also points the direction to a Hilbert space structure on
probability densities, whose vector space operations correspond
to the fusion and weighting of information.

I. INTRODUCTION

Practical estimation and control applications generally en-
tail the difficulty that the measured data is corrupted by noise.
Thus, the derivation of specific estimates from noisy mea-
surements is of little value, if the involved uncertainties are
not considered appropriately. A common approach consists
in modeling uncertain quantities stochastically by calculating
mean and estimate variance. These parameters correspond
to a Gaussian density characterizing the uncertainty about
the state. For a linear evolution of the state variable and
linear observation models, the Kalman filter [1] formulas
represent an optimal closed-form solution to the estimation
problem. In nonlinear situations, mean and estimate variance
often do not suffice to describe the underlying uncertainty
and they can even be deceptive, in particular when the
true probability density of the state estimate is multi-modal.
Since a closed-form computation of the actual density is
generally not possible, a lot of effort has been focused
on approximative solutions to nonlinear Bayesian state es-
timation. For this purpose, either the underlying system
and measurement mappings or the underlying probability
densities are approximated. In the former case, the nonlin-
earities are generally linearized by first-order Taylor series
approximations, which are performed within the extended
Kalman filter, or by a linear regression analysis, of which
the uncented Kalman filter [2] is a well-known example. Of
course, due to the Gaussian assumption, they only provide
very limited capabilities for capturing multi-modalities. This
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can be better achieved through density approximations such
as particle filters [3] or finite-dimensional representations via
orthonormal bases, e.g., truncated Fourier [4], [5] or wavelet
[6] series. All these approaches are intended to provide finite
and implementable parameterizations of the state estimates.

In the recent past, the rapid advances in sensor and
communication technology have increased the demand for
distributed and decentralized estimation and control architec-
tures. For linear distributed sensor systems, again an optimal
closed-form solution exists: The information filter [7] has
been derived as an inverse covariance formulation of the
Kalman filter, with the benefit that the fusion of multiple
sensor data can easily be distributed. This reformulation has
widely been applied to sensor networks [8], [9]. The infor-
mation filter herein calculates estimates on the information
about the state and not on the state itself, which simplifies the
fusion significantly. Also, the elimination of double-counted
information between two sensors nodes becomes very simple
in the information space.

Unfortunately, distributed fusion is still particularly chal-
lenging for nonlinear systems and sensors: The extended
information filter [7] comes with the same drawbacks as
the extended Kalman filter and developing distributed fusion
structures for arbitrary probability densities is elaborate [10].
For example, particles need to be transformed into continu-
ous representations [11]. In order to tackle these issues, the
aim of this paper is to lay down the theoretical foundation
for tractable nonlinear distributed data fusion. For this pur-
pose, a general formulation of the information filter will be
considered, which essentially is a log-likelihood formulation
of Bayes’ theorem. In order to fuse densities efficiently
in this information space representation, the logarithms of
the participating densities are approximated by truncated
orthonormal series expansions. In terms of the corresponding
coefficient vectors, the fusion and removal of information
becomes as simple as for the linear information filter.

Moreover, the considered representation is related to a
Hilbert space structure on the probability densities them-
selves. The corresponding vector space operations, addition
and scalar multiplication, are herein directly related to the
Bayesian fusion and the weighting of information, respec-
tively. Also, the norm in this Hilbert space provides a promis-
ing measure of information. In the following section, an
overview of linear estimation is provided and the advantages
of the information filter against the background of distributed
fusion are highlighted, before the remainder of this paper
focuses on nonlinear information filtering.



II. STATE OF THE ART:
LINEAR INFORMATION FILTERING

Practical systems are in general affected by perturbations
and inaccuracies, which have to be dealt with. For uncertain
linear discrete-time systems and linear observation models

xk+1 = Akxk + wk and ẑk = Hkxk + vk ,

the Kalman filter [1] and its derivatives provide estimates on
the uncertain state xk by computing mean x̂k and estimate
covariance matrix Ck at each time instant k, where vectors
are underlined, matrices are denoted by bold uppercase
letters, and random quantities are bold lowercase letters.
Uncertainties in the system evolution are characterized by
additive zero-mean white Gaussian noise wk ∼ N (0,Cw

k ).
The Kalman prediction step calculates the conditional mean

x̂p
k+1 = E{xk+1 | ẑk, ẑk−1, . . .} = Ak x̂

e
k (1)

and the corresponding covariance matrix

Cp
k+1 = E

{
(xk+1 − x̂

p
k+1)(xk+1 − x̂

p
k+1)T

∣∣ ẑk, ẑk−1, . . .
}

= AkC
e
kA

T
k + Cw

k
(2)

of the predicted state estimate. By means of the measurement
model, the predicted state estimate can then be fused with
an observation ẑk ∈ Rm corrupted by zero-mean white
Gaussian noise vk ∼ N (0,Cv

k). The Kalman filtering step
now provides the conditional mean

x̂e
k = E{xk | ẑk, ẑk−1, . . .} = x̂p

k + Kk

(
ẑk −Hk x̂

p
k

)
(3)

and covariance matrix

Ce
k = E

{
(xk − x̂

e
k)(xk − x̂

e
k)T

∣∣ ẑk, ẑk−1, . . .
}

= Cp
k −KkHkC

p
k

(4)

of the updated estimate xe
k, where

Kk = Cp
kH

T
k (Cv

k + HkC
p
kH

T
k )−1

is the Kalman gain. These prediction and fusion formulas
are designed to minimize the trace of the mean-squared
error covariance matrices (2) and (4). The Kalman filter is
a Bayesian estimator, i.e., the filtering step corresponds to
Bayes’ rule

f e
k(xk) = f(xk|ẑk, ẑk−1, . . .) =

fp
k (xk) · f(ẑk |xk)

f(ẑk | ẑk−1, ẑk−2, . . .)
.

(5)

The conditional estimated density f e
k(xk) is normally dis-

tributed with mean (3) and variance (4). The predicted
density fp

k (xk) = f(xk|ẑk−1, ẑk−2, . . .) is also a Gaus-
sian density with parameters (1) and (2). This state-space
formulation of the estimation problem entails the difficulty
that, in general, (3) cannot easily be extended to multiple
measurements, as it would be useful in sensor networks and
multisensor data fusion. This means that for a set of obser-
vations ẑ1

k, . . . , ẑ
M
k from M sensor nodes, the inequality

x̂e
k 6= x̂p

k +

M∑
i=1

Ki
k

(
ẑik −Hi

k x̂
p
k

)
(6)

holds, because the individual innovations
(
ẑik −Hi

k x̂
p
k

)
are

correlated due to a common prediction of the state [12].
Instead, one has to consider the combined observation vec-
tor ẑk := [(ẑ1

k)T, . . . , (ẑMk )T]T and measurement mapping
Hk := [(H1

k)T, . . . , (HM
k )T]T and has to insert them into

(3) and (4). Evidently, the need for calculating the Kalman
innovation for all measurements at once prohibits efficient
distributed data fusion algorithms.

Simply by rearranging the Kalman prediction and filtering
formulas and considering the information state vector

ŷ
k

:= C−1
k x̂k

and the information matrix

Yk := C−1
k (7)

instead of the state itself, distributed estimation can be
eased significantly [7], [12]. Through this inverse covariance
formulation of the estimation problem, the fusion step turns
into the sums

ŷe

k
= ŷp

k
+ ik and Ye

k = Yp
k + Ik

with

ik = HT
k (Cv

k)−1ẑk and Ik = HT
k (Cv

k)−1Hk .

Data fusion in the information space is obviously predestined
for dealing with multiple sensor data Zk = {ẑ1

k, . . . , ẑ
M
k } at

each time instant. In contrast to inequality (6), the fusion
rule becomes

ŷe

k
= ŷp

k
+

M∑
i=1

iik = ŷp

k
+

M∑
i=1

(Hi
k)T(Cv,i

k )−1ẑik ,

Ye
k = Yp

k +

M∑
i=1

Iik = Yp
k +

M∑
i=1

(Hi
k)T(Cv,i

k )−1Hi
k ,

(8)

which is due to the fact that the observations are condition-
ally independent, i.e.,

f(Zk |xk) = f(ẑ1
k, . . . , ẑ

M
k |xk) =

M∏
i=1

f i(ẑik |xk) . (9)

The matrices Hi
k and Cv,i

k denote the individual sensor map-
pings and noises, respectively. This simple filtering algorithm
comes at the expense of a slightly more elaborate prediction
step, which consists of the calculations

Yp
k+1 = [Ak(Ye

k)−1AT
k + Cw

k ]−1 ,

Lk+1 = Yp
k+1Ak(Ye

k)−1 , and

ŷp

k+1
= Lk+1 ŷ

e

k
.

As illustrated in Fig. 1, the fusion structure in (8) can easily
be distributed. Also, more sophisticated distributed fusion
systems, in which, for example, local estimates are generated
at each node, can efficiently be implemented in information
space [12]. Unfortunately, the fusion architecture (8) is only
of limited value for nonlinear systems and sensors. This issue
is in the focus of the remainder of this paper.
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Fig. 1. Every sensor node calculates its contribution and fuses it with data
from other nodes. In the data sink, the sensor data is then fused with prior
information.

III. THE IDEA BEHIND

It can be shown [7] that the information filter is a log-
likelihood representation of Bayesian state estimation and
that the inverse covariance matrix (7) is equal to the Fisher
information. Thus, minimum mean squared error estimation
corresponds to maximizing the Fisher information about
the state. In terms of the corresponding densities and by
employing the conditional indepence (9), the Bayesian fusion
rule

f e
k(xk) =

fp
k (xk) ·

∏M
i=1 f

i(ẑik |xk)

f(Zk | Zk−1,Zk−2, . . .)
, (10)

where Zk = {ẑ1
k, . . . , ẑ

M
k } denotes the multiple observations

at time instant k, becomes the sum

ln f e
k(xk) = ln fp

k (xk) +

M∑
i=1

ln f i(ẑik |xk)

− ln f(Zk | Zk−1,Zk−2, . . .) .

(11)

In the following, we will refer to (11) as the information
space formulation of the estimation problem, while (10) is
referred to as the state space formulation. The measurements
are conditionally independent given the current state, but
the joint probability density f(Zk | Zk−1,Zk−2, . . .) in (10)
cannot be split up in the same way as the likelihoods (9).
This states the reason why the Kalman filter is not easily
distributable, i.e., the reason for inequality (6). In con-
trast, in the information space, the normalizing constant
ln f(Zk | Zk−1,Zk−2, . . .) is, simply speaking, decoupled
and excluded from the fusion process. Instead, it is im-
plicitly calculated whenever the estimate is transformed
back into the state space. For Gaussian densities, the sum∑M
i=1 ln f i(ẑik |xk) in (11) directly corresponds to the sums∑M
i=1 i

i
k and

∑M
i=1 I

i
k in (8) and constant terms in (11) are

simply ignored.
In the following, the reformulation (11) of the data fusion

problem will provide the basis for information filtering with
arbitrary densities and nonlinear models.

IV. OUTLINE TO NONLINEAR
INFORMATION FILTERING

Of course, extending the linear information filter in the
same way the Kalman filter is extended by linearizing
nonlinear system and sensor mappings appears to be most
apparent, but this also yields the same drawbacks as for
the extended Kalman filter: The estimates may severely

suffer from linearization errors and the uncertainty is often
underestimated by the estimated covariance matrix. Other
approaches towards nonlinear distributed estimation [11],
[10] directly consider the Bayesian fusion rule (10) and
therefore cannot inherit the advantages of the information
space formulation. Especially eliminating common infor-
mation between two local estimates is often a necessity
in distributed and decentralized systems in order to avoid
double counting of information, i.e.,

f(xk | Zik ∪ Z
j
k) ∝

f(xk | Zik)f(xk | Z
j
k)

f(xk | Zik ∩ Z
j
k)

, (12)

where f(xk | Z
{i,j}
k ) are the local estimates to be fused

[8]. In state space, this requires the division by the density
f(xk | Zik ∩ Z

j
k) characterizing the common information. In

information space, the log of this density has to be subtracted
in (11) and, in particular, in the linear case this simply
corresponds to the subtraction of the common information
vector and matrix in (8).

Thus, in order to keep the benefits of the information space
when dealing with arbitrary densities, we have to derive an
approximation technique and parameterization of the partici-
pating densities that allows for the same simple manipulation
of information, i.e., addition and subtraction, as in the linear
information filter. For this purpose, we will consider the log-
likelihood formulation (11) of data fusion. Of course, only
densities that are non-zero almost everwhere can be fused
this way, but this issue can easily be worked around by
confining oneself to that subset Ω of the probability space,
over which all densities to be fused are non-zero. Excluding
parts containing “no information” is not a limitation, as the
fusion result will also have zero probability mass there.
The key idea behind this work is to approximate the log-
densities in (11) over Ω by means of orthonormal bases.
The choice of appropriate bases and especially the efficient
online approximation of the likelihoods are the subject of
the following section. The addition and subtraction of log-
densities then turn into the simple addition and subtraction
of coefficient vectors.

V. APPROXIMATION OF
LOG-PROBABILITY DENSITIES

For the purpose of approximating the conditional log-
densities in (11) and enabling an efficient fusion methodol-
ogy, the participating functions will be represented by means
of an orthonormal basis {ϕj}j≥0 in the Hilbert space of
square-integrable functions L2(Ω) over the domain Ω. So,
by confining oneself to an N -dimensional subspace of L2(Ω)
spanned by the subset {ϕj}Nj=1 , an approximation of ln fp

k

is given by

ln fp
k (xk) ≈

N∑
j=1

αp
j · ϕj(xk) (13)

with the coefficients

αp
j =

〈
ln fp

k , ϕj
〉
L2 =

∫
Ω

ln fp
k (xk) · ϕj(xk) dxk ,



where 〈·, ·〉L2 denotes the inner product in L2(Ω). Anal-
ogously, the log-likelihoods ln f i of the individual sensor
nodes are approximated by

ln f i(ẑk |xk) ≈
N∑
j=1

γij · ϕj(xk) , (14)

where the coefficients

γij =
〈

ln f i(ẑk | ·), ϕj
〉
L2 =

∫
Ω

ln f i(ẑk |xk)ϕj(xk) dxk

(15)
are calculated by means of the inner product. An essential
precondition for representing the densities this way is that
their logarithms need to be square-integrable, i.e., ln f ∈
L2(Ω). In the following, we therefore restrict our discussion
to probability densities lying in the set

P(Ω) := {f ∈ L1(Ω) | supp(f) = Ω, ln f ∈ L2(Ω)} .

This idea of representing probability densities in the informa-
tion space imposes the following condition on the domain Ω:
Since a probability density f is a positive and L1-integrable
function, its logarithm can only be square-integrable if Ω
is bounded. At first glance, the boundedness of Ω seems
to be very restrictive, but the domain can, of course, be
chosen large enough, so that all “interesting” parts of the
participating densities are captured. For instance, we will
particularly apply the presented approach to Gaussian noise
terms in the following example and in Section VII. All
told, every density function in the following discussions is
considered to be non-zero over Ω and the domain Ω to be
bounded.

The online applicability of the presented idea strongly
depends on a fast evaluation of the sensor log-likelihoods
ln f i(ẑik | ·) for given measurements, i.e., on the calculation
of the coefficient vectors [γi1, . . . , γ

i
M ]T from the inner

product (15). We start with an example calculation for a
nonlinear sensor model with a Gaussian pertubation.

Example: Gaussian measurement noise
For the sake of simplicity, we consider a one-dimensional state
and a scalar-valued measurement function

ẑk = h(xk) + v ,

where v is a zero-mean normally distributed random variable
with

fv(x) = 1√
2πσ

exp
{−(x)2

2σ2

}
.

The log-likelihood then simplifies to

ln f(ẑk |xk) = ln fv(ẑk − h(xk)) = − 1
2σ2 (ẑk − h(xk))2 − C ,

where C is a constant. The coefficients (15) are now given by

γj = 〈ln fv(ẑk − h(·)), ϕj〉L2

=

∫
Ω

ln fv(ẑk − h(xk))ϕj(xk)dxk

= − 1
2σ2

∫
Ω

(ẑk − h(xk))2ϕj(xk)dxk − Ĉ

= 1
σ2 ẑk

∫
Ω

h(xk)ϕj(xk)dxk − 1
2σ2

∫
Ω

h2(xk)ϕj(xk)dxk − C̃ ,

where all integrals can be computed in advance. All constant
summands are subsumed in C̃. Finally, the coefficients are
easily obtained by plugging concrete measurements into the
above equation.
In order to deal with other more complex sensor mod-
els, the log-likelihoods ln f i(zk |xk) can be interpreted as
dim(zk) × dim(xk)-dimensional functions in L2(Z × Ω),
where Z denotes the measurement space. Let {ψl}l≥0 be an
orthonormal basis in L2(Z). By virtue of the tensor product
basis {ψl ⊗ ϕj}(l,j) = {ψl · ϕj}(l,j), the log-likelihood
ln f i(· | ·) can then be approximated by

ln f i(zk |xk) ≈
L∑
l=1

N∑
j=1

βil,j · ψl(zk) · ϕj(xk) (16)

with

βil,j =
〈

ln f(· | ·), ψl · ϕj
〉
L2

=

∫
Z

∫
Ω

ln f(zk |xk)ψl(zk)ϕj(xk) dxkdzk .

These integrals can be computed numerically in advance.
For an obtained observation ẑik, the corresponding function
values ψl(ẑ

i
k) have to be inserted into (16). Thus, the

calculation (14) of the coefficients γij for ln f i(ẑik | ·) then
becomes the sum

γij =

L∑
l=1

βil,j · ψl(ẑ
i
k) ,

which can also be expressed as a matrix-vector multiplica-
tion. In Section II, we have highlighted that, for the calcula-
tions (11) in information space, the normalizing constants
ln f(Zk | Zk−1,Zk−2, . . .) are decoupled, which provides
the foundation for efficient distributed fusion algorithms.
More precisely, constants do not affect the parameters (8).
Accordingly, we have to demand that ln f and ln f + C
with constant offset C have the same coefficients (15), which
implies 〈

ln f, ϕj
〉
L2 =

〈
ln f + C,ϕj

〉
L2

=
〈

ln f, ϕj
〉
L2 +

〈
C,ϕj

〉
L2

for every j = 1, . . . , N . This means that the subspace
spanned by {ϕj}Nj=1 is orthogonal to the set of constant
functions, i.e.,

〈
C,ϕj

〉
L2 = 0. In particular, the complete

basis {ϕj}j≥0 of L2(Ω) needs to contain the constant basis
element ϕ0 = 1√

vol(Ω)
, so that all other basis elements

are orthogonal, i.e., 0 = 〈ϕ0, ϕi〉L2 for i 6= 0. Hence, a
wide variety of truncated basis expansions, e.g., Fourier,
wavelet, and Legendre basis expansions, can be employed
to approximate the log-densities.

With this spadework, the generalized fusion rule (11) for
M sensors can now be written in terms of the corresponding
coefficient vectors, i.e.,

[αe
1, . . . , α

e
N ]T = [αp

1 , . . . , α
p
N ]T +

M∑
i=1

[γi1, . . . , γ
i
N ]T ,



which yields the parameter vector αe
k := [αe

1, . . . , α
e
N ]T of

the estimated log-density ln f e
k . Apparently, this complies

with the same simple fusion structure as in the linear case (8).
The two main prerequisites for the presented approach can

be summarized as follows:
1) The bounded domain Ω is chosen such that the con-

sidered probability densities are non-zero over Ω.
2) The orthonormal basis {ϕj}Nj=1 is orthogonal to con-

stant functions.
As for the linear information filter, the benefits concern-

ing distributed data fusion are paid with a more compli-
cated prediction step. For nonlinear systems, the Chapman-
Kolmogorov integral for predicting the conditional densities
can in general not be solved in closed form and it is
a state space formulation. So, either the log-densities are
transformed back to state space at each prediction step
or the prediction is expressed in information space. For
deterministic or static systems, the second solution may be
the best choice, but for stochastic sytems, a transformation to
state space can be inevitable, i.e., the Chapman-Kolmogorov
integral becomes

ln fpk+1(xk+1)=ln

∫
Ω

f(xk+1|xk) exp{ln fek(xk)} dxk (17)

for the log-densities. For the simulations in this paper, the
inverse transformation exp and the transformation ln of the
integral are approximated. In order to calculate the first
operation, the coefficients of ln fek are approximately mapped
to an L2-basis in state space. In terms of the obtained
coefficients, the integral can then be evaluated. Finally,
the coefficients are mapped back to the information space
basis. Altogether, the implementation of the prediction step
depends on the actual system model and a general solution
cannot be stated.

While this section focused on the log-densities and their
approximations, the following section will consider the im-
plications on the probability densities themselves, i.e., the
implications on the state space.

VI. HILBERT SPACE STRUCTURE
ON PROBABILITY DENSITIES

For efficient nonlinear state estimation in state space,
truncated Fourier [4], [5] or wavelet [6] series expansions
have also been successfully applied. In contrast to (13), the
densities are then directly approximated by

fp
k (xk) ≈

N∑
j=1

ap
j · φj(xk) (18)

with ap
j = 〈f, φj〉L2 . As expected, we face the same situation

as in the linear case: While filtering is easy in information
space and prediction is elaborate, the opposite holds for the
state space approximation (18). Here, a reapproximation is
required for every filtering step, which is a second issue
besides the persistent problem of distributed fusion in state
space. Another problem of the truncated series (18) is that
it in general does not represent a valid probability density,

i.e., it possibly does not integrate to one and it can even take
negative function values. This is the point where an essential
advantage of the information space representation becomes
apparent. Transforming (13) back to state space always yields
a valid probability density. Even a single basis function ϕj
corresponds to a probability density

exp{ϕj(xk)}∫
Ω

exp{ϕj(ξk)} dξ
k

in state space and for the series expansion (13), we obtain

f(xk) ≈
∏N
j=1

(
exp{ϕj(xk)}

)γj∫
Ω

∏N
j=1

(
exp{ϕj(ξk)}

)γj
dξ
k

.

That implies that the elementwise sum ”+“ and the scalar
multiplication ”·“ in information space correspond to the
operations

f ⊕ g :=
f(·) · g(·)∫

Ω
f(ξ) · g(ξ) dξ

(19)

and

a� f :=
fa(·)∫

Ω
fa(ξ) dξ

(20)

in state space, respectively. As a generalization of the Aitchi-
son geometry [13], a Hilbert space A(Ω) on probability den-
sities has been developed by means of these operations [14],
where

〈f, g〉A(Ω) := 1
2vol(Ω)

∫
Ω

∫
Ω

ln
f(x)

f(y)
ln
g(x)

g(y)
dx dy

=

∫
Ω

ln f(x) ln g(x) dx− 1
vol(Ω)

∫
Ω

ln f(x) dx

∫
Ω

ln g(x) dx

is the inner product in A(Ω). This product induces the vector
space norm

‖f‖A(Ω) =

[ ∫
Ω

(
ln f(x)

)2
dx− 1

vol(Ω)

(∫
Ω

ln f(x) dx
)2
] 1

2

on A(Ω), which has, for example, been applied as an
information measure for sensor management in [15]. Simply
speaking, the spaces A(Ω) and L2(Ω) can be related by the
isometry ln : A(Ω) → L2(Ω), with which it can be proven
that A(Ω) is a Hilbert space. For the construction of bases
for product spaces A(Ω) × A(Ψ), the tensor product used
in (16) becomes

f ⊗A(Ω) g =
exp{ln f · ln g}∫

Ω

∫
Ψ

exp{ln f(x) · ln g(y)} dydy
.

Of course, likelihoods are not probability densities and
therefore no elements of A(Ω), but this does not pose a
problem due to the normalization in (19). In conclusion, the
information space considered as the function space L2 of
square-integrable functions is strongly related to a Hilbert
space structure in the state space. The vector space addition
and multiplication correspond to the Bayesian update (19)
and the power transformation (20), which is essentially a
weighting of information. All approximation techniques in



this space are compliant to operations on probabilities and
therefore yield valid probability densities. In other words,
complicated probability densities are approximated by sums
of simpler probability densities, which makes the information
space representation particularly attractive for stochastic state
estimation.

VII. SIMULATIONS
This section exemplifies the presented approach by means

of a cubic sensor that measures a static and a dynamic
system. In the first case, the nonlinear information filter even
provides optimal estimation results. Also, the communication
between two sensor nodes, which compute local estimates,
and the removal of common information is discussed. The
second case proves the applicability to dynamic state evolu-
tions.

1) Static System and Cubic Sensor: A constant system
state, i.e., xk+1 = a(xk) = 1, is measured by a cubic sensor

ẑk = h(xk) = x3
k +N (0, 0.052)

over a horizon of 50 time steps. The observations are
corrupted by zero-mean Gaussian noise with a standard devi-
ation of 0.05. The prior knowledge is modeled by a Gaussian
density with mean 1.5 and standard deviation 0.01. In Fig. 2,
the estimation results of an optimal Bayesian estimator, the
nonlinear information filter, and the extended Kalman filter
are compared. The Bayesian estimator serves as ground truth
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Fig. 2. Simulation run over 50 time steps. Blue: true system state; green
crosses: extended Kalman filter; red circles: optimal Bayesian esimator; cyan
stars: nonlinear information filter

in this simulation. The estimated density at each time instant
is obtained through a numerical computation of the fusion
rule (5). For that purpose, the densities have been discretized
over the interval [−2, 3]. The means of these densities are
depicted as circles. Obviously, they capture the true state
rather quickly. On the contrary, the estimates provided by the
extended Kalman filter converge very slowly to the true state.
Due to the bad prior and linearization errors, the extended
Kalman filter underestimates the true uncertainty and trusts
its own estimates more than it trusts new measurements.
The stars in Fig. 2 represents the means of the densities
provided by the nonlinear information filter, where Legendre
polynomials up to order 6 are employed for the truncated
series approximation over the interval [−2, 3]. As shown in
the example in Sec. V, the log-likelihood to be approximated
is given by

ln f(ẑk |xk) = − 1
2σ2 (ẑk − x3

k)2 − C ,

which is itself a polynomial of degree six and therefore, the
first seven Legendre polynomials suffice to represent this log-
likelihood even optimally. The Legendre polynomial of order

zero, the constant element, is omitted, since it only corre-
sponds to the normalizing constant. Thus, the log-densities
are represented by six-dimensional coefficient vectors and
the filtering at each time instant simply requires the addition
of these vectors. The estimates apparently coincide with the
optimal Bayesian results.

2) Two-sensor Data Fusion: For illustrating the benefits
of the nonlinear information filter with regard to distributed
estimation, we consider two sensor nodes with different
priors. Both nodes observe the state independently by means
of cubic sensors and calculate local estimates in information
space represented by the same Legendre basis as above.
Local estimates, where no communication between the nodes
takes place, are depicted as dashed lines in Fig. 3. The solid
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Fig. 3. Simulation with two sensor nodes. Dashed red and green lines
denote local estimates without communication. Solid red and green lines
shows local estimates that are communicated at every fifth time step.
Common information is removed, when the local estimates are fused.

lines correspond to a second simulation run, where the local
estimates are exchanged at every fifth time instant. For fusing
the local estimates, the information space formulation of (12)
has been employed. In order to avoid double counting, the
information that both nodes have in common is stored until
the next communication takes place, where it can then be
subtracted from the fusion result. Hence, the fusion process
only comprises vector additions and subtractions.

3) Trigonometric System and Cubic Sensor: As a dynamic
example, we consider the dynamic system

xk+1 = f(xk) = cos
(π

2
xk
)

+N (0, 0.22) ,

which is again observed by means of a cubic sensor with
the same parameters as above. Again, the extended Kalman
filter and the nonlinear information filter with six Legen-
dre polynomials are compared with the optimal Bayesian
estimator. Fig. 4 presents the results of a single simulation
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Fig. 4. Blue line: true system state; green crosses: extended Kalman filter;
red circles: Bayesian estimator; cyan stars: nonlinear information filter

run. Due to the approximate prediction step, the estimates
by the information filter are no longer optimal, but they are
still close to the results of the Bayesian estimator. In order
to solve the prediction step efficiently, the mappings exp



and ln in (17) are discretized and precalculated in terms of
the coefficients of ln f e

k . The transition density f(xk+1|xk)
is approximated by an L2-basis in state space, so that the
integral becomes a matrix-vector multiplication. Fig. 5
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Fig. 5. Densities at time steps k = 25 (blue) and k = 26 (green). The true
states are depicted as dots. The solid lines correspond to the true densities of
the state estimate. The dashed lines represents the Gaussian densities, which
correspond the Kalman filter estimates. The results from approximating the
densities in information space by Legendre polynomials are dash-dotted.

depicts the corresponding densities of the state estimates at
two specific time steps. Especially, the green plot shows that
the true density is captured well through the approximation
in information space, where only six basis elements have
been used.

VIII. CONCLUSIONS AND FUTURE WORKS

Instead of approximating probability densities directly,
we have shown in this paper that it can be beneficial to
approximate their logarithms. The Bayesian fusion formulas
then turn into the sums of log-densities, which in particular
eases the development of distributed fusion architectures.
Furthermore, the normalizing factor in Bayes’ rule becomes
an additive constant after applying the logarithm. This con-
stant can then be ignored in the information space, since it is
implicitly calculated, when the log-densities are transformed
back to probability densities, i.e., into state space. As a con-
crete approximation technique for log-densities, we suggest
to employ orthonormal series expansions. Orthonormal bases
that contain the constant basis element are especially well-
suited, so that the normalizing constant does not affect the
coefficients of the non-constant basis elements. For static
measurement models, the coefficients of the log-likelihoods
can be computed in advance and, for specific observations,
they can then easily be evaluated. We pointed out that
the orthonormal basis expansions of log-densities impose a
different vector space structure on the probability densities
themselves. This vector space provides the advantage that
addition and scalar multiplication of probability densities
again yield valid probability densities.

The weak spot of the information space representation
is the difficult prediction step. Not only the Chapman-
Kolmogorov integral needs to be computed, but also this
integral has to be expressed in terms of the coefficient vectors
or, alternatively, complicated transformations between state
space and information space are required. Prospective re-
search will particularly focus on providing feasible solutions
for the prediction step in terms of the information space.
For dynamic systems, also the boundedness of the domain
Ω is a problem, if the state moves outside the bounds. A
second problem is related to numerical instabilities, which

arise when probability densities tend to zero somewhere and
their logarithms approaches minus infinity accordingly. A
solution to these issues can be an online adaption of the
domain Ω, in order to exclude probability masses close to
zero. A thorough consideration of the related Hilbert space
structure on probability densities and the corresponding norm
also appears promising.
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