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Abstract— This paper introduces a new approach to the
recursive propagation of probability density functions through
discrete-time stochastic nonlinear dynamic systems. An efficient
recursive procedure is proposed that is based on the optimal ap-
proximation of the posterior densities after each prediction step
by means of Dirac mixtures. The parameters of the individual
components are selected by systematically minimizing a suitable
distance measure in such a way that the future evolution of
the approximate densities is as close to the exact densities as
possible.

NOTATION

f̃x(x) probability density function of x

fx(x) approximation of f̃x(x)
F̃ x(x), F x(x) corresponding distribution functions

δ(x) Dirac Delta function
H(x) Heaviside step function

G distance measure
η parameter vector
γ progression parameter

N (.,m, σ) Gaussian density
k time index

I. INTRODUCTION

In this paper, we consider the recursive propagation of
probability density functions through a stochastic nonlinear
dynamic system in discrete time. It is well known, that the
resulting densities cannot be calculated exactly, as the type
of density changes and the complexity increases. Hence,
practical processing schemes call for an approximation of
either the underlying system itself, which then allows the
application of, e.g. linear predictors, or for an approximation
of the densities resulting from the original system. Here, we
focus on the latter approach, where two main types of generic
density representations have been reported in the literature:
i) sample-based representations [1] and ii) analytic density
representations [2].

Sample-based predictors like the well known particle filter
[3], [4] typically employ Monte Carlo methods in order to
obtain the samples or particles required for representing the
underlying continuous densities. For that purpose, random
samples are typically generated by pseudo random number
generators.

In their simplest form, particle filters propagate the ran-
domly generated samples through the system and add ran-
domly sampled system noise to it. A special type of particle
filter is the so called regularized particle filter [5], [6], which
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resamples from a continuous approximation of the posterior
density and typically produces smoother results.

The Monte Carlo method suffers from a variety of prob-
lems caused by the randomness of the generated samples.
Hence, the results are not deterministic and a large number
of samples have to be applied in order to get satisfactory
results. Furthermore, the required number of samples cannot
be deduced a priori.

To remedy some of these problems, quasi random se-
quences have been proposed in [7], [8] as an alternative
to random sampling. Quasi random sequences are also
called low discrepancy sequences. A popular sequence is
the Niederreiter series [9]. A filter based on quasi random
sequences has been introduced in [10].

In this paper, we pursue a different approach, which is
based on the systematic approximation of the true posteriors
resulting from the prediction recursion and using this ap-
proximation as a system input for the next recursion step.
For approximation purposes, Dirac mixtures are employed
that, in contrast to Monte Carlo methods, are selected deter-
ministically and are optimally close to the true densities. This
type of approximation allows for exact computation of the
output density of a stochastic nonlinear system for a single
prediction step. Hence, this result is approximated again in
order to come up with a recursion mechanism of constant
complexity.

The approximations are selected in such in way that a cer-
tain measure of deviation between the true posterior and its
Dirac mixture approximation is minimized. Several options
for performing the approximation including the calculation
of both the optimal parameters and the optimal number of
components are pursued. In the case of comparing a Dirac
mixture approximation to a given density, typical distance
measures quantifying the distance between two densities
are not well defined. Hence, we compare the corresponding
cumulative distribution functions of the true density and its
approximation in order to find optimal parameters for the
Dirac mixture approximation as introduced in [11], [12].

The key contribution of this paper is the consideration of
the system’s future evolution, which is achieved by incorpo-
rating posterior densities in the optimization approach.

The paper is organized as follows: The prediction problem
is formulated in Section II followed by a short sketch
of the proposed solution procedure in Section III-A. We
introduce Dirac mixture densities in Section III-B and give
closed–form calculations for a single prediction step in
Section III-C. Various approximation criteria of different
computational complexity are introduced in Section IV in
order to determine the optimal number of components.
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Fig. 1. Unrolled representation of recursive prediction. The top branch corresponds to successive exact prediction steps. Densities f̌ denote the resulting
exact densities. The bottom branch corresponds to approximate recursive prediction achieved by approximation of the resulting posterior after each prediction
step. f denotes approximate densities. f̃ denotes densities that result from a single exact prediction step based on the prior approximation.

Practical algorithms and distance measures are presented
in Section V, followed by simulations in Section VI. Con-
clusions, possible extensions, and future work are given in
Section VII.

II. PROBLEM FORMULATION

We consider a nonlinear dynamic system evolving in
discrete time according to

xk+1 = ak (xk, uk, wk) , (1)

where xk is the state, uk a known input, and ak( · ) a time-
varying nonlinear mapping. wk represents both endogenous
and exogenous noise sources acting upon the system and is
described by means of a density function fw

k (wk).
Starting from an initial density fx

0 (x0) over the initial state
x0, our goal is to quantify the stochastic evolution of the
system over a finite horizon k = 1, . . . , N given the input
values uk, k = 0, . . . , N − 1.

This corresponds to sequentially calculating the state den-
sities fx

k (xk), k = 1, . . . , N by means of a prediction step
as depicted in in the upper part of Figure 1.

Exact computation of these densities, however, is not
feasible, as the complexity of the density increases in every
step. In addition, the resulting densities cannot be calculated
in analytic form in general.

The aim of this work is to provide a density representation
that approximates the true density, in order to allow for
closed-form calculation of the prediction step while main-
taining a predefined quality of the approximation with respect
to a given distance measure.

We restrict ourselves to scalar random variables in order to
simplify the notation. In addition, the time index k is omitted
in some cases without notice.

III. APPROXIMATION FOR NONLINEAR PREDICTION

A. Solution Sketch
As the exact recursive computation of the desired prob-

ability density functions is not feasible, an approximation

is inevitable. In this paper, we focus on approximating
the posterior density by means of a Dirac mixture after
each processing step, which serves as a prior for the next
prediction step. This is depicted in the lower part of Figure 1.

In order to illustrate the basic prediction procedure and the
advantages of using a Dirac mixture representation for all the
occurring densities, we assume that a Dirac mixture density
is already given at some time step k. This Dirac mixture
is used as a prior density, i.e., as an input density, for the
next prediction step from time step k to time step k + 1.
Exploiting the properties of the Dirac delta function allows
for closed-form calculation of the subsequent prediction step
at time step k + 1. This will be discussed in Section III-
C. Specifically, for the important case of nonlinear systems
corrupted by additive Gaussian noise, where the resulting
posterior is given by a Gaussian mixture density.

The posterior resulting from a Dirac mixture prior can
easily be calculated in closed form. Due to the noise of
the system it is not in general of the same type as the
prior density. For recursive application of the proposed
procedure, however, a Dirac mixture posterior is required as
an input for the next prediction step. Hence, a systematic re-
approximation of the exact posterior by means of a Dirac
mixture is performed by minimizing a certain optimality
criterion.

When implementing this type of approximate prediction
procedure, a system designer is offered several degrees of
freedom. The first choice concerns the type of Dirac mixture,
which is discussed in Section III-B. Of course, there are
several options for rating the quality of the approximation of
the true posterior, where the most obvious is the best approx-
imation according to some deviation measure. However, it
also makes sense to include the quality of the future evolution
of the approximate prediction when adjusting the parameters
of the approximating function for the current time step. Four
major types of approximation criteria will be introduced in
Section IV. Given a certain approximation criterion, several



options for performing the actual calculation of appropriate
density parameters are given in Section IV. This includes
optimal optimization approaches and suboptimal but less
computationally demanding approaches.

B. Dirac Mixture for Generic Density Representation
For representing arbitrary density functions, Dirac mix-

tures according to

f(x, η) =
L∑

i=1

wi δ(x − xi) (2)

are employed according to [12], where

η = [x1, x2, . . . , xL, w1, w2, . . . , wL]T

is a parameter vector consisting of locations xi, i = 1, . . . , L
and weighting coefficients wi, i = 1, . . . , L. Since the
properties of a density function f(x) demand, that f(x) ≥ 0
and

∫
IR

f(x) dx = 1, we require the weights wi to be
non-negative and to sum up to 1. Hence, we have 2L
parameters with 2L − 1 degrees of freedom. A simplified
density representation can be given by equally weighted
Dirac mixtures [11], where only L parameters and L degrees
of freedom are used.

Dirac mixtures are a generic density representation for
approximating complicated densities arising when propagat-
ing a given density through a nonlinear system suffering
from noise. The properties of Dirac mixtures render them
very useful for efficiently performing prediction of stochastic
nonlinear dynamic systems, which will be shown in the next
subsection.

C. Single Prediction Step
The state densities fx

k+1(xk+1), k = 1, . . . , N are calcu-
lated by evaluating the Bayesian forward step, which can
be performed in closed form for Dirac mixture priors. For
simplicity, we will now focus on additive Gaussian noise
without loss of generality.

The Bayesian forward step in this case is given by

fx
k+1(xk+1) =

∫ ∞

−∞
f(xk+1|xk)fx

k (xk) dxk , (3)

where the transition density f(xk+1|xk) is given by

f(xk+1|xk) = N (xk+1, ak(xk, uk), σv) .

For general prior densities fx
k (xk), the integral involved

in (3) cannot be solved analytically. However, for a given
input point x̂k represented by the Dirac delta function
fx

k (xk) = δ(xk − x̂k), (3) can be solved in closed form
according to

fx
k+1(xk+1) = N (xk+1, ak(x̂k, uk), σv

k) ,

which is a Gaussian density with a standard deviation σv
k

corresponding to the system noise.
For a given Dirac mixture prior fx

k (xk) according to (2)
given by

fx
k (xk) =

L∑
i=1

wi
kδ(xk − x̂i

k) , (4)

fk−1 Sk A Sk+1 f̃k+1

Sk+1
˜̃
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Fig. 2. Cutout of the unrolled prediction recursion shown in Figure 1
including two prediction steps and an intermediate density approximation.
The input and noise values have been omitted for simplicity.

the posterior from (3) is a Gaussian mixture given by

fx
k+1(xk+1) =

L∑
i=1

wi N
(
xk+1, ak(x̂i

k, uk), σv
k

)
,

which is the closed form solution. Please note, that similar
results can be derived for non-additive and non-Gaussian
noise, see (1).

In order to perform closed-form predictions of this type
recursively, the given posteriors are systematically approxi-
mated by means of Dirac mixtures with respect to a certain
approximation criterion. The resulting Dirac mixtures are
then used as priors for the subsequent prediction steps.

IV. APPROXIMATION CRITERIA

Given the exact posterior as described in the previous
section, our goal is to find an optimal re-approximation
by means of a Dirac mixture. More precisely, the goal is
to calculate both the optimal number of components and
their optimal parameters with respect to a certain optimality
criterion.

In this section, several strategies for rating the effect of a
given approximation of the prior density at time step k are
introduced. The discussion focuses on the consideration of
the future system evolution and is limited to the approxima-
tion structure, i.e., the location of suitable comparison points
in time. Specific distance measures will be discussed in the
next section.

For explaining the different approximation criteria, we
consider a cutout of the unrolled prediction recursion com-
prising two prediction steps plus an intermediate density
approximation shown in Figure 2.

A. Prior Optimization
The most obvious optimization approach is the direct

comparison of the true density f̃k and its approximation fk.
Although this is the most straightforward approach, a good
approximation at time step k does not necessarily assure that
the future evolution of the approximate state densities is close
to the true states.

B. Lookahead Optimization
A more desirable approximation structure would be to find

an approximation at time step k that minimizes deviation
measures between true densities in the future and their
respective approximations. Ideally, this would be performed
for the desired, probably very large or even infinite, number
of prediction steps.



Algorithm 1 Optimal # of components w.r.t. the prior density
1: Select max. error threshold Gmax

2: Select initial number of components L = L0

3: Select search step ΔL
4: while G

(
η
)

> Gmax do
5: η = approx(L)
6: L = L + ΔL
7: end while
8: Ll = L − 2ΔL
9: Lu = L − ΔL

10: while Lu − Ll > 1 do
11: Lt = Ll + �Lu−Ll

2 �
12: η = approx(Ll)
13: if G

(
η
)

> Gmax then
14: Ll = Lt

15: else
16: Lu = Lt

17: end if
18: end while

C. Posterior Optimization

A practical solution is limited to a few steps ahead into
the future. For a single step into the future of the system’s
evolution, we compare the densities f̃k+1 and ˜̃

fk+1. f̃k+1 is
the “exact” density directly resulting from the approximation
density fk. ˜̃

fk+1 corresponds to the exact propagation of the
exact density f̃k of the previous prediction step before the
considered approximation through the system. This approach
is computationally more demanding than the first approach.
However, it considers the system’s future evolution while
determining appropriate parameters of the approximation
density at time step k.

D. Optimization of the Prior for Best Posterior Fit

An even more practical solution is the direct comparison
of f̃k and its approximation fk as discussed in Section IV-A
for the purpose of calculating optimal parameters for a given
number of parameters. As an extension, the optimal number
of parameters of this approximation is deduced from the
comparison of the posterior densities f̃k+1 and ˜̃

fk+1 one
step ahead into the future.

So far, the discussion was limited to the approximation
structure, i.e., to locating suitable densities used for assessing
the quality of the selected approximation with respect to the
future evolution of the system. The actual comparison of
these densities and the calculation of appropriate approxima-
tion parameters will be systematically performed by means
of distance measures. Two algorithms based on specific
approximation structures and specific distance measures will
be given in the next section.

V. OPTIMIZATION FOR SPECIFIC DISTANCE MEASURES

This section focuses on the two specific approximation
structures given in Section IV-A and Section IV-D. Both
approaches select the parameters of the Dirac mixture ap-
proximation of the prior density for a certain prediction step

based on comparing the prior densities. They differ, however,
in the way the number of parameters are selected. The first
approach according to Section IV-A that will be detailed in
Section V-A also selects the number of parameters based on
comparing the prior densities. Doing so is straightforward
and just requires the evaluation of the given distance measure
between the true prior and its Dirac mixture approximation.
However, it is difficult for the designer to specify a mea-
sure for the approximation quality that is relevant for the
future evolution of the system. Hence, the second approach
according to Section IV-D that will be detailed in Section V-
B considers the future evolution of the system while selecting
the number of Dirac mixture components for approximating
the prior. This is performed by comparing the posterior that
results from the true prior and the posterior that results from
the approximated prior depending upon the number of Dirac
mixture components.

When comparing the continuous densities after the pre-
diction step, standard distance measures can be applied. The
comparison of the prior densities, however, requires measures
of distance between a continuous density (the true prior) and
its Dirac mixture approximation. Appropriate measures for
this purpose will be introduced in Section V-C.

A. Optimizing for the Prior

We first present an approach for finding the optimal
number of components for the approximation, considering
only the prior densities as motivated in Section IV-A. Alg. 1
compares the approximation fk(x) to the true continuous
density f̃k(x) with respect to a certain distance measure
G(η), where η is the parameter vector of the Dirac mix-
ture approximation. A practical distance measure together
with the optimal approximation method will be given in
Section V-C.

For this algorithm a maximum acceptable error Gmax, an
initial number of components L0, and an initial search step
ΔL are selected. The rest of this algorithm is an application
of a binary search algorithm.

B. Optimizing for the Posterior

The next algorithm presents the application of the approx-
imation criterion given in Section IV-D. Alg. 2 also finds
the optimal number of components, but in this case with
respect to the predicted densities f̃k+1 and ˜̃

fk+1. The main
difference to Alg. 1 is that first an initial approximation with
a very large number of components is generated and passed
through the prediction step, resulting in a continuous density
representation with parameter vector κt. Due to the high
number of components we can assume this density to be
very close to the true density ˜̃

fk+1. The remainder of the
algorithm is similar to Alg. 1 except for the fact that now a
distance measure between two continuous density functions
is applied. An efficient procedure for approximating arbitrary
mixture densities with Dirac mixtures comprising a large
number of components is given in Section V-D.



Algorithm 2 Optim. # of components w.r.t. the poster. dens.
1: Select max. Error Threshold Gmax

2: Select initial number of Components L = L0

3: Select search step ΔL
4: κt = predict(approx(Llarge))
5: while G > Gmax do
6: κ = predict(approx(L))
7: G = G(κt, κ)
8: L = L + ΔL
9: end while

10: Ll = L − 2ΔL
11: Lu = L − ΔL
12: while Lu − Ll > 1 do
13: Lt = Ll + �Lu−Ll

2 �
14: κ = predict(approx(Ll))
15: G = G(κt, κ)
16: if G > Gmax then
17: Ll = Lt

18: else
19: Lu = Lt

20: end if
21: end while

C. Optimal Approximation

Both algorithms presented in the previous sections depend
on a distance measure and on an optimal approximation
approach. As a distance measure for comparing continuous
densities, measures like the Kullback–Leibler divergence
[13] or integral quadratic measures are popular candidates.
For comparing a continuous density to a Dirac mixture,
however, they are not useful. Instead of comparing the densi-
ties directly, in our approach the corresponding (cumulative)
distribution functions are employed for that purpose.

The distribution function corresponding to the true density
f̃(x) is given by

F̃ (x) =
∫ x

−∞
f̃(t) dt .

The distribution function corresponding to the Dirac mixture
approximation can be written as

F (x, η) =
∫ x

−∞
f(t, η) dt =

L∑
i=1

wiH(x − xi) , (5)

where H(.) denotes the Heaviside function defined as

H(x) =

⎧⎨
⎩

0, x < 0
1
2 , x = 0
1, x > 0

.

A suitable distance measure is given by the weighted
Cramér–von Mises distance [14]

G(η) =
∫ ∞

−∞
g(x)

(
F̃ (x) − F (x, η)

)2

dx , (6)

where g(x) is a non-negative weighting function. In the
specific application, g(x) is selected in such a way that only
those portions of the considered probability density function

relevant for the future evolution are approximated with a
high accuracy. This avoids to put much approximation effort
into irrelevant regions of the state space. The goal is now
to find a parameter vector η that minimizes (6) according to
η = arg minη G(η).

Unfortunately it is not possible to solve this optimization
problem directly in closed form. Hence, we introduce an
approach to find the solution progressively by applying the
homotopy continuation method [12]. In order to apply this
method, we introduce a so called progression parameter
γ into F̃ (x) that goes from 0 . . . 1. The purpose of this
parameter is to find a simple and exact approximation of
F̃ (x, γ) for γ = 0. Furthermore we must guarantee that
F̃ (x, γ = 1) = F̃ (x). By varying γ from 0 to 1 we track the
parameter vector η that minimizes the distance measure.

In order to find the minimum of the distance measure, we
have to find the root of the partial derivative with respect to
η according to

∂G(η, γ)
∂η

=

⎡
⎣

∂G(η,γ)

∂x

∂G(η,γ)

∂w

⎤
⎦ != 0 . (7)

To track the minimum of the distance measure we have to
take the derivative of (7) with respect to γ. This results in a
system of ordinary first order differential equations that can
be written in vector–matrix–form as

b = Pη̇ , (8)

where

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F̃ (x1,γ)
∂γ
...

∂F̃ (xL,γ)
∂γ∫ c

x0

∂F̃ (x,γ)
∂γ dx∫ c

x1

∂F̃ (x,γ)
∂γ dx
...∫ c

xL

∂F̃ (x,γ)
∂γ dx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

η̇ =
∂η

∂γ
=

[
ẋ1, . . . , ẋL, ẇ0, ẇ1, . . . , ẇL

]T
.

η̇ denotes the derivative of η with respect to γ. The P
matrix as well as the derivations are given in [12]. The
approximation of f̃(x) now boils down to solving (8) on
the interval [0, 1].

D. Suboptimal Approximation
For a growing number of Dirac mixture components, the

approximation procedures become more and more difficult
to implement. Of course, the computational demand of the
optimal approximation also increases.

For a large number of samples, two alternative approaches
are available. The first approach relies on Dirac mixtures with
equally weighted components. This, however, might not yield
the desired results. In addition, this approach also requires an
optimization procedure. The second alternative is especially



interesting for the approximation of mixture densities, which
are important in the context of this paper. It relies on the
simple fact that a suboptimal approximation of a mixture
of densities is obtained by a mixture of the approximations
of the individual components. Here, another two options are
available: The approximations of the individual components,
e.g. Gaussians, could either be calculated on-line or cal-
culated off-line and stored in some approximation library.
The latter option requires some memory space but leads to
extremely fast approximation procedures.

VI. SIMULATIONS

We now show some simulations using a stochastic non-
linear dynamic system that exhibits chaotic behavior, which
was presented in [15]. An autonomous system

xk+1 = a(xk) + wk ,

with a time-invariant nonlinearity

a(xk) = 0.230xk(16 − xk)

is assumed, where wk is zero mean additive Gaussian noise
with a standard deviation of σw = 0.4.

The simulation starts with x0 = 8, which leads to a
Gaussian density for k = 1 given by

f̃x
1 (x1) = N (x1, 14.72, 0.4) .

We approximate the true prior density fx
1 (x1) and apply 5

prediction steps for calculating fx
2 (x2) to fx

6 (x6).
In order to have a ground truth to compare to, we calculate

the true density functions f̌x
2 (x2) to f̌x

6 (x6), by means of
brute force numerical integration. The resulting densities are
shown with blue lines in Figure 3.

In the first simulation depicted in Figure 3 a), we show
the performance of the proposed new approach presented in
this paper for a fixed number of L = 40 components. We
compare the Gaussian mixture densities resulting from each
prediction step according to Section III-C to the ground truth.
After each prediction step, the resulting Gaussian mixture is
re-approximated with a constant number of components, here
40, in order to compute the next prediction step. The number
of components is not optimized in this simulation run.

Figure 3 b) shows the proposed new approach with an
optimal selection of the number of components based on the
algorithm presented in Section V-B. The maximum distance
measure was selected to Gmax = 0.5% for a normalized
squared integral distance measure between the true posterior
and its approximation. The minimum number of components
for achieving a distance measure below this threshold and the
actual error in each step are:

k 2 3 4 5 6
L 19 37 47 52 58
G 0.483% 0.444% 0.439% 0.425% 0.497%

In Figure 3 c) and d) we show the predictions based on
Monte Carlo sampling with n = 40 and n = 4000 samples,
respectively. In addition, Figure 3 e) shows the predictions
made by the Unscented Kalman filter (UKF) [16].

A first observation here is that the Gaussian noise as-
sumption of the UKF makes it impossible to keep track
of the multimodality of the true density. Furthermore, we
can see a low performance of the Monte Carlo approach
for a small number of samples. Compared to the proposed
new approach, two orders of magnitude more samples are
required for achieving a similar approximation accuracy.

By comparing Figure 3 a) and b) we notice, that the
number of components for an optimal approximation varies
from prediction step to prediction step. This is due to the fact,
that the complexity of the true density changes over time.
The number of components does not necessarily increase
over time as it can be observed here. There are also systems
where the number of components decreases with time or
stays constant.

VII. CONCLUSIONS AND FUTURE WORK

The key idea of this paper is to approximate the posterior
density after every prediction step by means of a Dirac
mixture in order to obtain a recursive prediction procedure.

Compared to particle filters that use random samples to
represent the densities, the proposed approach has several
distinct advantages. First, the Dirac components are system-
atically placed in order to minimize a given distance measure,
which is selected in such a way that the future evolution of
approximate densities is always close to the (unknown) true
evolution. As a result, very few samples are sufficient to
achieve an astonishing long-term prediction quality. Second,
the optimization does not only include the parameters of the
Dirac mixture approximation, i.e., weights and locations, but
also the number of components. As a result, the number
of components is automatically adjusted according to the
complexity of the underlying true distribution. Third, as the
approximation is fully deterministic, the proposed prediction
procedure guarantees a dependable performance that can be
specified beforehand.

The new approach is natural, mathematically rigorous,
and based on efficient algorithms [11], [12] for the optimal
approximation of arbitrary densities by Dirac mixtures with
respect to a given distance measure. It is important to note
that no assumptions about the nonlinearity of the dynamic
system are made.

Implementation of the proposed approach is rather
straightforward. In addition, the prototype implementation
used for performing simulations turned out to be very sta-
ble, numerically uncritical, and produces repeatable results.
Simulations with a chaotic system demonstrate the useful-
ness and practical relevance of the proposed new prediction
approach in comparison to several standard filters.

The prediction mechanism is useful in its own respect
and can be applied in a wide variety of scenarios: long-
term prediction of the state of nonlinear dynamic systems
corrupted by noise, prediction of time series, reachability
analysis, and model-predictive control. However, a predictor
is also an essential part of model-based estimation of the state
of a stochastic nonlinear system from noisy measurements.
Current research activities are focused on developing similar
procedures for the filtering part of a complete estimator.
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Fig. 3. Five prediction steps with Dirac mixture approximation a) 40 components and b) optimal number of components for a maximum posterior distance
measure of 0.5%, Monte Carlo sampling with c) 40 and d) 4000 samples, and e) the Unscented Kalman filter (UKF), compared to the true densities (shown
in blue) at each time step. The density for k = 1 is a Gaussian density for all filters given in (VI) and has been omitted.
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